Optimal. Leaf size=30 \[ 1-e^{-e^{\frac {1}{5} (5+x-4 (3-x) (1+x))}} (9+x) \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 68, normalized size of antiderivative = 2.27, number of steps used = 2, number of rules used = 2, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 2288} \begin {gather*} -\frac {\left (-8 x^2-65 x+63\right ) \exp \left (\frac {1}{5} \left (-4 x^2+7 x+7\right )-e^{\frac {1}{5} \left (4 x^2-7 x-7\right )}+\frac {1}{5} \left (4 x^2-7 x-7\right )\right )}{7-8 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{-e^{\frac {1}{5} \left (-7-7 x+4 x^2\right )}} \left (-5+e^{\frac {1}{5} \left (-7-7 x+4 x^2\right )} \left (-63+65 x+8 x^2\right )\right ) \, dx\\ &=-\frac {\exp \left (-e^{\frac {1}{5} \left (-7-7 x+4 x^2\right )}+\frac {1}{5} \left (7+7 x-4 x^2\right )+\frac {1}{5} \left (-7-7 x+4 x^2\right )\right ) \left (63-65 x-8 x^2\right )}{7-8 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 25, normalized size = 0.83 \begin {gather*} -e^{-e^{\frac {1}{5} \left (-7-7 x+4 x^2\right )}} (9+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 19, normalized size = 0.63 \begin {gather*} -{\left (x + 9\right )} e^{\left (-e^{\left (\frac {4}{5} \, x^{2} - \frac {7}{5} \, x - \frac {7}{5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 34, normalized size = 1.13 \begin {gather*} -x e^{\left (-e^{\left (\frac {4}{5} \, x^{2} - \frac {7}{5} \, x - \frac {7}{5}\right )}\right )} - 9 \, e^{\left (-e^{\left (\frac {4}{5} \, x^{2} - \frac {7}{5} \, x - \frac {7}{5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.70
method | result | size |
norman | \(\left (-x -9\right ) {\mathrm e}^{-{\mathrm e}^{\frac {4}{5} x^{2}-\frac {7}{5} x -\frac {7}{5}}}\) | \(21\) |
risch | \(\frac {\left (-5 x -45\right ) {\mathrm e}^{-{\mathrm e}^{\frac {4}{5} x^{2}-\frac {7}{5} x -\frac {7}{5}}}}{5}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 19, normalized size = 0.63 \begin {gather*} -{\left (x + 9\right )} e^{\left (-e^{\left (\frac {4}{5} \, x^{2} - \frac {7}{5} \, x - \frac {7}{5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.14, size = 20, normalized size = 0.67 \begin {gather*} -{\mathrm {e}}^{-{\mathrm {e}}^{-\frac {7\,x}{5}}\,{\mathrm {e}}^{-\frac {7}{5}}\,{\mathrm {e}}^{\frac {4\,x^2}{5}}}\,\left (x+9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.74, size = 22, normalized size = 0.73 \begin {gather*} \left (- x - 9\right ) e^{- e^{\frac {4 x^{2}}{5} - \frac {7 x}{5} - \frac {7}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________