Optimal. Leaf size=15 \[ e^{6/5} \log \left (-4+\frac {3}{x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 39, normalized size of antiderivative = 2.60, number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {12, 1594, 6742, 628} \begin {gather*} e^{6/5} \log \left (-x^2+3 x+3\right )+e^{6/5} \log (1-x)-2 e^{6/5} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 628
Rule 1594
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{6/5} \int \frac {-6+x^3}{3 x-4 x^3+x^4} \, dx\\ &=e^{6/5} \int \frac {-6+x^3}{x \left (3-4 x^2+x^3\right )} \, dx\\ &=e^{6/5} \int \left (\frac {1}{-1+x}-\frac {2}{x}+\frac {-3+2 x}{-3-3 x+x^2}\right ) \, dx\\ &=e^{6/5} \log (1-x)-2 e^{6/5} \log (x)+e^{6/5} \int \frac {-3+2 x}{-3-3 x+x^2} \, dx\\ &=e^{6/5} \log (1-x)-2 e^{6/5} \log (x)+e^{6/5} \log \left (3+3 x-x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.47 \begin {gather*} e^{6/5} \left (-2 \log (x)+\log \left (3-4 x^2+x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 21, normalized size = 1.40 \begin {gather*} e^{\frac {6}{5}} \log \left (x^{3} - 4 \, x^{2} + 3\right ) - 2 \, e^{\frac {6}{5}} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 1.60 \begin {gather*} {\left (\log \left ({\left | x^{2} - 3 \, x - 3 \right |}\right ) + \log \left ({\left | x - 1 \right |}\right ) - 2 \, \log \left ({\left | x \right |}\right )\right )} e^{\frac {6}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.47
method | result | size |
risch | \(-2 \,{\mathrm e}^{\frac {6}{5}} \ln \relax (x )+{\mathrm e}^{\frac {6}{5}} \ln \left (x^{3}-4 x^{2}+3\right )\) | \(22\) |
default | \({\mathrm e}^{\frac {6}{5}} \left (-2 \ln \relax (x )+\ln \left (x -1\right )+\ln \left (x^{2}-3 x -3\right )\right )\) | \(24\) |
norman | \({\mathrm e}^{\frac {6}{5}} \ln \left (x -1\right )+{\mathrm e}^{\frac {6}{5}} \ln \left (x^{2}-3 x -3\right )-2 \,{\mathrm e}^{\frac {6}{5}} \ln \relax (x )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 21, normalized size = 1.40 \begin {gather*} {\left (\log \left (x^{2} - 3 \, x - 3\right ) + \log \left (x - 1\right ) - 2 \, \log \relax (x)\right )} e^{\frac {6}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.33, size = 21, normalized size = 1.40 \begin {gather*} {\mathrm {e}}^{6/5}\,\ln \left (x^3-4\,x^2+3\right )-2\,{\mathrm {e}}^{6/5}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 26, normalized size = 1.73 \begin {gather*} - 2 e^{\frac {6}{5}} \log {\relax (x )} + e^{\frac {6}{5}} \log {\left (x^{3} - 4 x^{2} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________