Optimal. Leaf size=26 \[ e^x+\left (x+4 \log \left ((-1+\log (9)) \log \left (3+x \left (e^x+x\right )\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 8.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^2+e^x \left (8 x+8 x^2\right )+\left (6 x+e^{2 x} x+2 x^3+e^x \left (3+3 x^2\right )\right ) \log \left (3+e^x x+x^2\right )+\left (64 x+e^x (32+32 x)+\left (24+8 e^x x+8 x^2\right ) \log \left (3+e^x x+x^2\right )\right ) \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x-\frac {8 \left (3+3 x-x^2+x^3\right ) \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {2 \left (4+4 x+x \log \left (3+e^x x+x^2\right )\right ) \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{x \log \left (3+e^x x+x^2\right )}\right ) \, dx\\ &=2 \int \frac {\left (4+4 x+x \log \left (3+e^x x+x^2\right )\right ) \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {\left (3+3 x-x^2+x^3\right ) \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+\int e^x \, dx\\ &=e^x+2 \int \left (\frac {4+4 x+x \log \left (3+e^x x+x^2\right )}{\log \left (3+e^x x+x^2\right )}+\frac {4 \left (4+4 x+x \log \left (3+e^x x+x^2\right )\right ) \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )}\right ) \, dx-8 \int \left (\frac {3 \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {3 \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}-\frac {x \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {x^2 \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx\\ &=e^x+2 \int \frac {4+4 x+x \log \left (3+e^x x+x^2\right )}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {\left (4+4 x+x \log \left (3+e^x x+x^2\right )\right ) \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^2 \left (x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x+4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+2 \int \left (x+\frac {4 (1+x)}{\log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \left (\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )+\frac {4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )}+\frac {4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \left (\frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {4 x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx-8 \int \left (\frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {4 x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx-24 \int \left (\frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx-24 \int \left (\frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {4 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx\\ &=e^x+x^2+8 \int \frac {1+x}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+8 \int \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right ) \, dx-24 \int \frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+x^2+8 x \log \left (-\left ((1-\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )+8 \int \left (\frac {1}{\log \left (3+e^x x+x^2\right )}+\frac {x}{\log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x \left (2 x+e^x (1+x)\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+x^2+8 x \log \left (-\left ((1-\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )-8 \int \left (\frac {1+x}{\log \left (3+e^x x+x^2\right )}-\frac {3+3 x-x^2+x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \frac {1}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+x^2+8 x \log \left (-\left ((1-\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )+8 \int \frac {1}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x}{\log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {1+x}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {3+3 x-x^2+x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+x^2+8 x \log \left (-\left ((1-\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )-8 \int \left (\frac {1}{\log \left (3+e^x x+x^2\right )}+\frac {x}{\log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \left (\frac {3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {3 x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}-\frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}+\frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )}\right ) \, dx+8 \int \frac {1}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x}{\log \left (3+e^x x+x^2\right )} \, dx+8 \int \frac {x^2}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-8 \int \frac {x^3}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {1}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-24 \int \frac {x}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ &=e^x+x^2+8 x \log \left (-\left ((1-\log (9)) \log \left (3+e^x x+x^2\right )\right )\right )+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \log \left (3+e^x x+x^2\right )} \, dx+32 \int \frac {x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-32 \int \frac {x^2 \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{\left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx-96 \int \frac {\log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )}{x \left (3+e^x x+x^2\right ) \log \left (3+e^x x+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 48, normalized size = 1.85 \begin {gather*} e^x+x^2+8 x \log \left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right )+16 \log ^2\left ((-1+\log (9)) \log \left (3+e^x x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 49, normalized size = 1.88 \begin {gather*} x^{2} + 8 \, x \log \left ({\left (2 \, \log \relax (3) - 1\right )} \log \left (x^{2} + x e^{x} + 3\right )\right ) + 16 \, \log \left ({\left (2 \, \log \relax (3) - 1\right )} \log \left (x^{2} + x e^{x} + 3\right )\right )^{2} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 65, normalized size = 2.50 \begin {gather*} x^{2} + 8 \, x \log \left (2 \, \log \relax (3) - 1\right ) + 8 \, x \log \left (\log \left (x^{2} + x e^{x} + 3\right )\right ) + 32 \, \log \left (2 \, \log \relax (3) - 1\right ) \log \left (\log \left (x^{2} + x e^{x} + 3\right )\right ) + 16 \, \log \left (\log \left (x^{2} + x e^{x} + 3\right )\right )^{2} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 50, normalized size = 1.92
method | result | size |
risch | \(x^{2}+8 \ln \left (\left (2 \ln \relax (3)-1\right ) \ln \left ({\mathrm e}^{x} x +x^{2}+3\right )\right ) x +16 \ln \left (\left (2 \ln \relax (3)-1\right ) \ln \left ({\mathrm e}^{x} x +x^{2}+3\right )\right )^{2}+{\mathrm e}^{x}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 55, normalized size = 2.12 \begin {gather*} x^{2} + 8 \, x \log \left (2 \, \log \relax (3) - 1\right ) + 8 \, {\left (x + 4 \, \log \left (2 \, \log \relax (3) - 1\right )\right )} \log \left (\log \left (x^{2} + x e^{x} + 3\right )\right ) + 16 \, \log \left (\log \left (x^{2} + x e^{x} + 3\right )\right )^{2} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 49, normalized size = 1.88 \begin {gather*} {\mathrm {e}}^x+8\,x\,\ln \left (\ln \left (x\,{\mathrm {e}}^x+x^2+3\right )\,\left (2\,\ln \relax (3)-1\right )\right )+16\,{\ln \left (\ln \left (x\,{\mathrm {e}}^x+x^2+3\right )\,\left (2\,\ln \relax (3)-1\right )\right )}^2+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.66, size = 53, normalized size = 2.04 \begin {gather*} x^{2} + 8 x \log {\left (\left (-1 + 2 \log {\relax (3 )}\right ) \log {\left (x^{2} + x e^{x} + 3 \right )} \right )} + e^{x} + 16 \log {\left (\left (-1 + 2 \log {\relax (3 )}\right ) \log {\left (x^{2} + x e^{x} + 3 \right )} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________