Optimal. Leaf size=30 \[ \left (2+x-\frac {2 x+e^{x^2} x}{4-\log (4)}-\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.43, antiderivative size = 109, normalized size of antiderivative = 3.63, number of steps used = 12, number of rules used = 8, integrand size = 175, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6, 12, 14, 2226, 2209, 2212, 6686, 2288} \begin {gather*} \frac {e^{2 x^2} x^2}{(4-\log (4))^2}-\frac {4 e^{x^2} \left (x^3 (1-\log (2))-x^2 (2-\log (2)) \log (x)+2 x^2 (2-\log (2))\right )}{x (4-\log (4))^2}+\frac {(2 x (1-\log (2))-2 (2-\log (2)) \log (x)+8-\log (16))^2}{(4-\log (4))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2209
Rule 2212
Rule 2226
Rule 2288
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-64+16 x+8 x^2+e^{2 x^2} \left (2 x^2+4 x^4\right )+\left (32-12 x-8 x^2\right ) \log (4)+\left (-4+2 x+2 x^2\right ) \log ^2(4)+e^{x^2} \left (-8 x-8 x^2-32 x^3-8 x^4+\left (2 x+4 x^2+8 x^3+4 x^4\right ) \log (4)\right )+\left (32-16 x+(-16+12 x) \log (4)+(2-2 x) \log ^2(4)+e^{x^2} \left (8 x+16 x^3+\left (-2 x-4 x^3\right ) \log (4)\right )\right ) \log (x)}{x (16-8 \log (4))+x \log ^2(4)} \, dx\\ &=\int \frac {-64+16 x+8 x^2+e^{2 x^2} \left (2 x^2+4 x^4\right )+\left (32-12 x-8 x^2\right ) \log (4)+\left (-4+2 x+2 x^2\right ) \log ^2(4)+e^{x^2} \left (-8 x-8 x^2-32 x^3-8 x^4+\left (2 x+4 x^2+8 x^3+4 x^4\right ) \log (4)\right )+\left (32-16 x+(-16+12 x) \log (4)+(2-2 x) \log ^2(4)+e^{x^2} \left (8 x+16 x^3+\left (-2 x-4 x^3\right ) \log (4)\right )\right ) \log (x)}{x \left (16-8 \log (4)+\log ^2(4)\right )} \, dx\\ &=\frac {\int \frac {-64+16 x+8 x^2+e^{2 x^2} \left (2 x^2+4 x^4\right )+\left (32-12 x-8 x^2\right ) \log (4)+\left (-4+2 x+2 x^2\right ) \log ^2(4)+e^{x^2} \left (-8 x-8 x^2-32 x^3-8 x^4+\left (2 x+4 x^2+8 x^3+4 x^4\right ) \log (4)\right )+\left (32-16 x+(-16+12 x) \log (4)+(2-2 x) \log ^2(4)+e^{x^2} \left (8 x+16 x^3+\left (-2 x-4 x^3\right ) \log (4)\right )\right ) \log (x)}{x} \, dx}{16-8 \log (4)+\log ^2(4)}\\ &=\frac {\int \left (2 e^{2 x^2} x \left (1+2 x^2\right )+\frac {2 (4-x (2-\log (4))-\log (4)) \left (-2 x (1-\log (2))-8 \left (1-\frac {\log (2)}{2}\right )+4 \left (1-\frac {\log (2)}{2}\right ) \log (x)\right )}{x}+2 e^{x^2} \left (-4 x (1-\log (2))-4 x^3 (1-\log (2))-4 \left (1-\frac {\log (2)}{2}\right )-16 x^2 \left (1-\frac {\log (2)}{2}\right )+4 \left (1-\frac {\log (2)}{2}\right ) \log (x)+8 x^2 \left (1-\frac {\log (2)}{2}\right ) \log (x)\right )\right ) \, dx}{16-8 \log (4)+\log ^2(4)}\\ &=\frac {2 \int e^{2 x^2} x \left (1+2 x^2\right ) \, dx}{(4-\log (4))^2}+\frac {2 \int \frac {(4-x (2-\log (4))-\log (4)) \left (-2 x (1-\log (2))-8 \left (1-\frac {\log (2)}{2}\right )+4 \left (1-\frac {\log (2)}{2}\right ) \log (x)\right )}{x} \, dx}{(4-\log (4))^2}+\frac {2 \int e^{x^2} \left (-4 x (1-\log (2))-4 x^3 (1-\log (2))-4 \left (1-\frac {\log (2)}{2}\right )-16 x^2 \left (1-\frac {\log (2)}{2}\right )+4 \left (1-\frac {\log (2)}{2}\right ) \log (x)+8 x^2 \left (1-\frac {\log (2)}{2}\right ) \log (x)\right ) \, dx}{(4-\log (4))^2}\\ &=\frac {(8+2 x (1-\log (2))-\log (16)-2 (2-\log (2)) \log (x))^2}{(4-\log (4))^2}-\frac {4 e^{x^2} \left (x^3 (1-\log (2))+2 x^2 (2-\log (2))-x^2 (2-\log (2)) \log (x)\right )}{x (4-\log (4))^2}+\frac {2 \int \left (e^{2 x^2} x+2 e^{2 x^2} x^3\right ) \, dx}{(4-\log (4))^2}\\ &=\frac {(8+2 x (1-\log (2))-\log (16)-2 (2-\log (2)) \log (x))^2}{(4-\log (4))^2}-\frac {4 e^{x^2} \left (x^3 (1-\log (2))+2 x^2 (2-\log (2))-x^2 (2-\log (2)) \log (x)\right )}{x (4-\log (4))^2}+\frac {2 \int e^{2 x^2} x \, dx}{(4-\log (4))^2}+\frac {4 \int e^{2 x^2} x^3 \, dx}{(4-\log (4))^2}\\ &=\frac {e^{2 x^2}}{2 (4-\log (4))^2}+\frac {e^{2 x^2} x^2}{(4-\log (4))^2}+\frac {(8+2 x (1-\log (2))-\log (16)-2 (2-\log (2)) \log (x))^2}{(4-\log (4))^2}-\frac {4 e^{x^2} \left (x^3 (1-\log (2))+2 x^2 (2-\log (2))-x^2 (2-\log (2)) \log (x)\right )}{x (4-\log (4))^2}-\frac {2 \int e^{2 x^2} x \, dx}{(4-\log (4))^2}\\ &=\frac {e^{2 x^2} x^2}{(4-\log (4))^2}+\frac {(8+2 x (1-\log (2))-\log (16)-2 (2-\log (2)) \log (x))^2}{(4-\log (4))^2}-\frac {4 e^{x^2} \left (x^3 (1-\log (2))+2 x^2 (2-\log (2))-x^2 (2-\log (2)) \log (x)\right )}{x (4-\log (4))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 32, normalized size = 1.07 \begin {gather*} \frac {\left (-8+x \left (-2+e^{x^2}+\log (4)\right )+\log (16)-(-4+\log (4)) \log (x)\right )^2}{(-4+\log (4))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 137, normalized size = 4.57 \begin {gather*} \frac {x^{2} e^{\left (2 \, x^{2}\right )} + 4 \, {\left (x^{2} + 4 \, x\right )} \log \relax (2)^{2} + 4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )} \log \relax (x)^{2} + 4 \, x^{2} - 4 \, {\left (x^{2} - {\left (x^{2} + 2 \, x\right )} \log \relax (2) + 4 \, x\right )} e^{\left (x^{2}\right )} - 8 \, {\left (x^{2} + 6 \, x\right )} \log \relax (2) - 4 \, {\left (2 \, {\left (x + 2\right )} \log \relax (2)^{2} + {\left (x \log \relax (2) - 2 \, x\right )} e^{\left (x^{2}\right )} - 2 \, {\left (3 \, x + 8\right )} \log \relax (2) + 4 \, x + 16\right )} \log \relax (x) + 32 \, x}{4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 180, normalized size = 6.00 \begin {gather*} \frac {4 \, x^{2} e^{\left (x^{2}\right )} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2} - 4 \, x e^{\left (x^{2}\right )} \log \relax (2) \log \relax (x) - 8 \, x \log \relax (2)^{2} \log \relax (x) + 4 \, \log \relax (2)^{2} \log \relax (x)^{2} + x^{2} e^{\left (2 \, x^{2}\right )} - 4 \, x^{2} e^{\left (x^{2}\right )} - 8 \, x^{2} \log \relax (2) + 8 \, x e^{\left (x^{2}\right )} \log \relax (2) + 16 \, x \log \relax (2)^{2} + 8 \, x e^{\left (x^{2}\right )} \log \relax (x) + 24 \, x \log \relax (2) \log \relax (x) - 16 \, \log \relax (2)^{2} \log \relax (x) - 16 \, \log \relax (2) \log \relax (x)^{2} + 4 \, x^{2} - 16 \, x e^{\left (x^{2}\right )} - 48 \, x \log \relax (2) - 16 \, x \log \relax (x) + 64 \, \log \relax (2) \log \relax (x) + 16 \, \log \relax (x)^{2} + 32 \, x - 64 \, \log \relax (x)}{4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 209, normalized size = 6.97
method | result | size |
risch | \(\ln \relax (x )^{2}-\frac {x \left (2 \ln \relax (2)+{\mathrm e}^{x^{2}}-2\right ) \ln \relax (x )}{\ln \relax (2)-2}+\frac {\ln \relax (2)^{2} x^{2}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {x^{2} {\mathrm e}^{x^{2}} \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}-\frac {4 \ln \relax (x ) \ln \relax (2)^{2}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {4 x \ln \relax (2)^{2}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {2 x \,{\mathrm e}^{x^{2}} \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}-\frac {2 x^{2} \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}-\frac {x^{2} {\mathrm e}^{x^{2}}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {x^{2} {\mathrm e}^{2 x^{2}}}{4 \left (\ln \relax (2)-2\right )^{2}}+\frac {16 \ln \relax (x ) \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}-\frac {12 x \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}-\frac {4 x \,{\mathrm e}^{x^{2}}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {x^{2}}{\left (\ln \relax (2)-2\right )^{2}}-\frac {16 \ln \relax (x )}{\left (\ln \relax (2)-2\right )^{2}}+\frac {8 x}{\left (\ln \relax (2)-2\right )^{2}}\) | \(209\) |
default | \(-\frac {x \,{\mathrm e}^{x^{2}} \ln \relax (x ) \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}+\frac {x^{2} {\mathrm e}^{x^{2}} \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}+\frac {2 x \,{\mathrm e}^{x^{2}} \ln \relax (2)}{\left (\ln \relax (2)-2\right )^{2}}+\frac {2 x \,{\mathrm e}^{x^{2}} \ln \relax (x )}{\left (\ln \relax (2)-2\right )^{2}}-\frac {x^{2} {\mathrm e}^{x^{2}}}{\left (\ln \relax (2)-2\right )^{2}}-\frac {4 x \,{\mathrm e}^{x^{2}}}{\left (\ln \relax (2)-2\right )^{2}}+\frac {\ln \relax (2)^{2} x^{2}}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}+\frac {2 x \ln \relax (2)^{2}}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}-\frac {2 x^{2} \ln \relax (2)}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}-\frac {6 x \ln \relax (2)}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}+\frac {x^{2}}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}+\frac {4 x}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}-\frac {4 \ln \relax (2)^{2} \ln \relax (x )}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}+\frac {16 \ln \relax (2) \ln \relax (x )}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}-\frac {16 \ln \relax (x )}{\ln \relax (2)^{2}-4 \ln \relax (2)+4}+\frac {x^{2} {\mathrm e}^{2 x^{2}}}{4 \ln \relax (2)^{2}-16 \ln \relax (2)+16}-\frac {2 \ln \relax (2) \ln \relax (x ) x}{\ln \relax (2)-2}+\frac {2 x \ln \relax (2)}{\ln \relax (2)-2}+\frac {\ln \relax (x )^{2} \ln \relax (2)}{\ln \relax (2)-2}+\frac {2 x \ln \relax (x )}{\ln \relax (2)-2}-\frac {2 x}{\ln \relax (2)-2}-\frac {2 \ln \relax (x )^{2}}{\ln \relax (2)-2}\) | \(345\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 728, normalized size = 24.27 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.74, size = 216, normalized size = 7.20 \begin {gather*} \frac {4\,x}{{\ln \relax (2)}^2-\ln \left (16\right )+4}+\frac {x^2\,{\mathrm {e}}^{x^2}\,\left (\ln \relax (2)-1\right )+x\,{\mathrm {e}}^{x^2}\,\left (\ln \relax (4)-4\right )}{{\ln \relax (2)}^2-\ln \left (16\right )+4}+\frac {x^2}{{\ln \relax (2)}^2-\ln \left (16\right )+4}-\frac {16\,\ln \relax (x)}{{\ln \relax (2)}^2-\ln \left (16\right )+4}+\frac {x^3\,\left (\ln \relax (4)-2\right )+x^2\,{\ln \relax (x)}^2\,\left (\ln \relax (2)-2\right )-x^3\,{\mathrm {e}}^{x^2}\,\ln \relax (x)-x^3\,\ln \relax (x)\,\left (\ln \relax (4)-2\right )}{x^2\,\left (\ln \relax (2)-2\right )}-\frac {2\,\ln \relax (2)\,\left (3\,x-8\,\ln \relax (x)+x^2\right )}{{\ln \relax (2)}^2-\ln \left (16\right )+4}+\frac {x^2\,{\mathrm {e}}^{2\,x^2}}{2\,\left (2\,{\ln \relax (2)}^2-\ln \left (256\right )+8\right )}+\frac {{\ln \relax (2)}^2\,\left (2\,x-4\,\ln \relax (x)+x^2\right )}{{\ln \relax (2)}^2-\ln \left (16\right )+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.10, size = 240, normalized size = 8.00 \begin {gather*} \frac {\left (- 2 x \log {\relax (2 )} + 2 x\right ) \log {\relax (x )}}{-2 + \log {\relax (2 )}} + \frac {\left (- 4 x^{2} \log {\relax (2 )} + x^{2} \log {\relax (2 )}^{2} + 4 x^{2}\right ) e^{2 x^{2}} + \left (- 16 x^{2} - 20 x^{2} \log {\relax (2 )}^{2} + 4 x^{2} \log {\relax (2 )}^{3} + 32 x^{2} \log {\relax (2 )} - 48 x \log {\relax (2 )} \log {\relax (x )} - 4 x \log {\relax (2 )}^{3} \log {\relax (x )} + 24 x \log {\relax (2 )}^{2} \log {\relax (x )} + 32 x \log {\relax (x )} - 64 x - 48 x \log {\relax (2 )}^{2} + 8 x \log {\relax (2 )}^{3} + 96 x \log {\relax (2 )}\right ) e^{x^{2}}}{- 128 \log {\relax (2 )} - 32 \log {\relax (2 )}^{3} + 4 \log {\relax (2 )}^{4} + 96 \log {\relax (2 )}^{2} + 64} + \frac {x^{2} \left (- 2 \log {\relax (2 )} + \log {\relax (2 )}^{2} + 1\right ) + x \left (- 12 \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} + 8\right ) - 4 \left (-2 + \log {\relax (2 )}\right )^{2} \log {\relax (x )}}{- 4 \log {\relax (2 )} + \log {\relax (2 )}^{2} + 4} + \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________