3.73.2 31259395x+1867x2+8632x36351x4+566x5+832x6304x7+32x8+(62503125x5625x2+4750x3200x4864x5+304x632x7)log(2+x)+(6250x9385x2+3749x3+1002x41200x5+336x632x7+(6250+9375x3750x21000x3+1200x4336x5+32x6)log(2+x))log(625x1001x2+600x3160x4+16x5+(625+1000x600x2+160x316x4)log(2+x)6251000x+600x2160x3+16x4)6250x2+9385x33749x41002x5+1200x6336x7+32x8+(6250x9375x2+3750x3+1000x41200x5+336x632x7)log(2+x)+(6250x9385x2+3749x3+1002x41200x5+336x632x7+(6250+9375x3750x21000x3+1200x4336x5+32x6)log(2+x))log(625x1001x2+600x3160x4+16x5+(625+1000x600x2+160x316x4)log(2+x)6251000x+600x2160x3+16x4)dx

Optimal. Leaf size=29 1+x+log(x+log(xx2(52x)4log(2+x)))

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} $Aborted

Verification is not applicable to the result.

[In]

Int[(3125 - 9395*x + 1867*x^2 + 8632*x^3 - 6351*x^4 + 566*x^5 + 832*x^6 - 304*x^7 + 32*x^8 + (6250 - 3125*x -
5625*x^2 + 4750*x^3 - 200*x^4 - 864*x^5 + 304*x^6 - 32*x^7)*Log[2 + x] + (6250*x - 9385*x^2 + 3749*x^3 + 1002*
x^4 - 1200*x^5 + 336*x^6 - 32*x^7 + (-6250 + 9375*x - 3750*x^2 - 1000*x^3 + 1200*x^4 - 336*x^5 + 32*x^6)*Log[2
 + x])*Log[(625*x - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x^5 + (-625 + 1000*x - 600*x^2 + 160*x^3 - 16*x^4)*Log[2
 + x])/(625 - 1000*x + 600*x^2 - 160*x^3 + 16*x^4)])/(-6250*x^2 + 9385*x^3 - 3749*x^4 - 1002*x^5 + 1200*x^6 -
336*x^7 + 32*x^8 + (6250*x - 9375*x^2 + 3750*x^3 + 1000*x^4 - 1200*x^5 + 336*x^6 - 32*x^7)*Log[2 + x] + (6250*
x - 9385*x^2 + 3749*x^3 + 1002*x^4 - 1200*x^5 + 336*x^6 - 32*x^7 + (-6250 + 9375*x - 3750*x^2 - 1000*x^3 + 120
0*x^4 - 336*x^5 + 32*x^6)*Log[2 + x])*Log[(625*x - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x^5 + (-625 + 1000*x - 60
0*x^2 + 160*x^3 - 16*x^4)*Log[2 + x])/(625 - 1000*x + 600*x^2 - 160*x^3 + 16*x^4)]),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 44, normalized size = 1.52 x+log(xlog(x(6251001x+600x2160x3+16x4)(52x)4log(2+x)))

Antiderivative was successfully verified.

[In]

Integrate[(3125 - 9395*x + 1867*x^2 + 8632*x^3 - 6351*x^4 + 566*x^5 + 832*x^6 - 304*x^7 + 32*x^8 + (6250 - 312
5*x - 5625*x^2 + 4750*x^3 - 200*x^4 - 864*x^5 + 304*x^6 - 32*x^7)*Log[2 + x] + (6250*x - 9385*x^2 + 3749*x^3 +
 1002*x^4 - 1200*x^5 + 336*x^6 - 32*x^7 + (-6250 + 9375*x - 3750*x^2 - 1000*x^3 + 1200*x^4 - 336*x^5 + 32*x^6)
*Log[2 + x])*Log[(625*x - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x^5 + (-625 + 1000*x - 600*x^2 + 160*x^3 - 16*x^4)
*Log[2 + x])/(625 - 1000*x + 600*x^2 - 160*x^3 + 16*x^4)])/(-6250*x^2 + 9385*x^3 - 3749*x^4 - 1002*x^5 + 1200*
x^6 - 336*x^7 + 32*x^8 + (6250*x - 9375*x^2 + 3750*x^3 + 1000*x^4 - 1200*x^5 + 336*x^6 - 32*x^7)*Log[2 + x] +
(6250*x - 9385*x^2 + 3749*x^3 + 1002*x^4 - 1200*x^5 + 336*x^6 - 32*x^7 + (-6250 + 9375*x - 3750*x^2 - 1000*x^3
 + 1200*x^4 - 336*x^5 + 32*x^6)*Log[2 + x])*Log[(625*x - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x^5 + (-625 + 1000*
x - 600*x^2 + 160*x^3 - 16*x^4)*Log[2 + x])/(625 - 1000*x + 600*x^2 - 160*x^3 + 16*x^4)]),x]

[Out]

x + Log[x - Log[(x*(625 - 1001*x + 600*x^2 - 160*x^3 + 16*x^4))/(5 - 2*x)^4 - Log[2 + x]]]

________________________________________________________________________________________

fricas [B]  time = 0.57, size = 81, normalized size = 2.79 x+log(x+log(16x5160x4+600x31001x2(16x4160x3+600x21000x+625)log(x+2)+625x16x4160x3+600x21000x+625))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((32*x^6-336*x^5+1200*x^4-1000*x^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+
3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+6
25*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+(-32*x^7+304*x^6-864*x^5-200*x^4+4750*x^3-5625*x^2-3125*x+6250)*log
(2+x)+32*x^8-304*x^7+832*x^6+566*x^5-6351*x^4+8632*x^3+1867*x^2-9395*x+3125)/(((32*x^6-336*x^5+1200*x^4-1000*x
^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160
*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+625*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+
(-32*x^7+336*x^6-1200*x^5+1000*x^4+3750*x^3-9375*x^2+6250*x)*log(2+x)+32*x^8-336*x^7+1200*x^6-1002*x^5-3749*x^
4+9385*x^3-6250*x^2),x, algorithm="fricas")

[Out]

x + log(-x + log((16*x^5 - 160*x^4 + 600*x^3 - 1001*x^2 - (16*x^4 - 160*x^3 + 600*x^2 - 1000*x + 625)*log(x +
2) + 625*x)/(16*x^4 - 160*x^3 + 600*x^2 - 1000*x + 625)))

________________________________________________________________________________________

giac [B]  time = 3.37, size = 93, normalized size = 3.21 x+log(xlog(16x516x4log(x+2)160x4+160x3log(x+2)+600x3600x2log(x+2)1001x2+1000xlog(x+2)+625x625log(x+2))+log(16x4160x3+600x21000x+625))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((32*x^6-336*x^5+1200*x^4-1000*x^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+
3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+6
25*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+(-32*x^7+304*x^6-864*x^5-200*x^4+4750*x^3-5625*x^2-3125*x+6250)*log
(2+x)+32*x^8-304*x^7+832*x^6+566*x^5-6351*x^4+8632*x^3+1867*x^2-9395*x+3125)/(((32*x^6-336*x^5+1200*x^4-1000*x
^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160
*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+625*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+
(-32*x^7+336*x^6-1200*x^5+1000*x^4+3750*x^3-9375*x^2+6250*x)*log(2+x)+32*x^8-336*x^7+1200*x^6-1002*x^5-3749*x^
4+9385*x^3-6250*x^2),x, algorithm="giac")

[Out]

x + log(x - log(16*x^5 - 16*x^4*log(x + 2) - 160*x^4 + 160*x^3*log(x + 2) + 600*x^3 - 600*x^2*log(x + 2) - 100
1*x^2 + 1000*x*log(x + 2) + 625*x - 625*log(x + 2)) + log(16*x^4 - 160*x^3 + 600*x^2 - 1000*x + 625))

________________________________________________________________________________________

maple [C]  time = 0.35, size = 751, normalized size = 25.90




method result size



risch x+ln(ln(x5+(ln(2+x)10)x4+(10ln(2+x)+752)x3+(75ln(2+x)2100116)x2+(125ln(2+x)2+62516)x625ln(2+x)16)i(πcsgn(i(x52)4)csgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16))csgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16)(x52)4)πcsgn(i(x52)4)csgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16)(x52)4)2πcsgn(i(x52))2csgn(i(x52)2)+2πcsgn(i(x52))csgn(i(x52)2)2πcsgn(i(x52))csgn(i(x52)2)csgn(i(x52)3)+πcsgn(i(x52))csgn(i(x52)3)2πcsgn(i(x52))csgn(i(x52)3)csgn(i(x52)4)+πcsgn(i(x52))csgn(i(x52)4)2πcsgn(i(x52)2)3+πcsgn(i(x52)2)csgn(i(x52)3)2πcsgn(i(x52)3)3+πcsgn(i(x52)3)csgn(i(x52)4)2πcsgn(i(x52)4)3+πcsgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16))csgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16)(x52)4)2πcsgn(i(x5(ln(2+x)10)x4(10ln(2+x)+752)x3(75ln(2+x)2100116)x2(125ln(2+x)2+62516)x+625ln(2+x)16)(x52)4)38iln(x52)2ix)2) 751



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((32*x^6-336*x^5+1200*x^4-1000*x^3-3750*x^2+9375*x-6250)*ln(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+3749*x^
3-9385*x^2+6250*x)*ln(((-16*x^4+160*x^3-600*x^2+1000*x-625)*ln(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+625*x)/(16
*x^4-160*x^3+600*x^2-1000*x+625))+(-32*x^7+304*x^6-864*x^5-200*x^4+4750*x^3-5625*x^2-3125*x+6250)*ln(2+x)+32*x
^8-304*x^7+832*x^6+566*x^5-6351*x^4+8632*x^3+1867*x^2-9395*x+3125)/(((32*x^6-336*x^5+1200*x^4-1000*x^3-3750*x^
2+9375*x-6250)*ln(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+3749*x^3-9385*x^2+6250*x)*ln(((-16*x^4+160*x^3-600*x^2
+1000*x-625)*ln(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+625*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+(-32*x^7+336*
x^6-1200*x^5+1000*x^4+3750*x^3-9375*x^2+6250*x)*ln(2+x)+32*x^8-336*x^7+1200*x^6-1002*x^5-3749*x^4+9385*x^3-625
0*x^2),x,method=_RETURNVERBOSE)

[Out]

x+ln(ln(x^5+(-ln(2+x)-10)*x^4+(10*ln(2+x)+75/2)*x^3+(-75/2*ln(2+x)-1001/16)*x^2+(125/2*ln(2+x)+625/16)*x-625/1
6*ln(2+x))-1/2*I*(Pi*csgn(I/(x-5/2)^4)*csgn(I*(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)*x^3-(-75/2*ln(2+x)-100
1/16)*x^2-(125/2*ln(2+x)+625/16)*x+625/16*ln(2+x)))*csgn(I/(x-5/2)^4*(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)
*x^3-(-75/2*ln(2+x)-1001/16)*x^2-(125/2*ln(2+x)+625/16)*x+625/16*ln(2+x)))-Pi*csgn(I/(x-5/2)^4)*csgn(I/(x-5/2)
^4*(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)*x^3-(-75/2*ln(2+x)-1001/16)*x^2-(125/2*ln(2+x)+625/16)*x+625/16*l
n(2+x)))^2-Pi*csgn(I*(x-5/2))^2*csgn(I*(x-5/2)^2)+2*Pi*csgn(I*(x-5/2))*csgn(I*(x-5/2)^2)^2-Pi*csgn(I*(x-5/2))*
csgn(I*(x-5/2)^2)*csgn(I*(x-5/2)^3)+Pi*csgn(I*(x-5/2))*csgn(I*(x-5/2)^3)^2-Pi*csgn(I*(x-5/2))*csgn(I*(x-5/2)^3
)*csgn(I*(x-5/2)^4)+Pi*csgn(I*(x-5/2))*csgn(I*(x-5/2)^4)^2-Pi*csgn(I*(x-5/2)^2)^3+Pi*csgn(I*(x-5/2)^2)*csgn(I*
(x-5/2)^3)^2-Pi*csgn(I*(x-5/2)^3)^3+Pi*csgn(I*(x-5/2)^3)*csgn(I*(x-5/2)^4)^2-Pi*csgn(I*(x-5/2)^4)^3+Pi*csgn(I*
(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)*x^3-(-75/2*ln(2+x)-1001/16)*x^2-(125/2*ln(2+x)+625/16)*x+625/16*ln(2
+x)))*csgn(I/(x-5/2)^4*(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)*x^3-(-75/2*ln(2+x)-1001/16)*x^2-(125/2*ln(2+x
)+625/16)*x+625/16*ln(2+x)))^2-Pi*csgn(I/(x-5/2)^4*(-x^5-(-ln(2+x)-10)*x^4-(10*ln(2+x)+75/2)*x^3-(-75/2*ln(2+x
)-1001/16)*x^2-(125/2*ln(2+x)+625/16)*x+625/16*ln(2+x)))^3-8*I*ln(x-5/2)-2*I*x))

________________________________________________________________________________________

maxima [B]  time = 0.73, size = 76, normalized size = 2.62 x+log(x+log(16x516x4(log(x+2)+10)+40x3(4log(x+2)+15)x2(600log(x+2)+1001)+125x(8log(x+2)+5)625log(x+2))4log(2x5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((32*x^6-336*x^5+1200*x^4-1000*x^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+
3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+6
25*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+(-32*x^7+304*x^6-864*x^5-200*x^4+4750*x^3-5625*x^2-3125*x+6250)*log
(2+x)+32*x^8-304*x^7+832*x^6+566*x^5-6351*x^4+8632*x^3+1867*x^2-9395*x+3125)/(((32*x^6-336*x^5+1200*x^4-1000*x
^3-3750*x^2+9375*x-6250)*log(2+x)-32*x^7+336*x^6-1200*x^5+1002*x^4+3749*x^3-9385*x^2+6250*x)*log(((-16*x^4+160
*x^3-600*x^2+1000*x-625)*log(2+x)+16*x^5-160*x^4+600*x^3-1001*x^2+625*x)/(16*x^4-160*x^3+600*x^2-1000*x+625))+
(-32*x^7+336*x^6-1200*x^5+1000*x^4+3750*x^3-9375*x^2+6250*x)*log(2+x)+32*x^8-336*x^7+1200*x^6-1002*x^5-3749*x^
4+9385*x^3-6250*x^2),x, algorithm="maxima")

[Out]

x + log(-x + log(16*x^5 - 16*x^4*(log(x + 2) + 10) + 40*x^3*(4*log(x + 2) + 15) - x^2*(600*log(x + 2) + 1001)
+ 125*x*(8*log(x + 2) + 5) - 625*log(x + 2)) - 4*log(2*x - 5))

________________________________________________________________________________________

mupad [B]  time = 5.16, size = 53, normalized size = 1.83 x+ln(xln(625xln(x+2)(2x5)41001x2+600x3160x4+16x5(2x5)4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log((625*x - log(x + 2)*(600*x^2 - 1000*x - 160*x^3 + 16*x^4 + 625) - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x
^5)/(600*x^2 - 1000*x - 160*x^3 + 16*x^4 + 625))*(6250*x - 9385*x^2 + 3749*x^3 + 1002*x^4 - 1200*x^5 + 336*x^6
 - 32*x^7 - log(x + 2)*(3750*x^2 - 9375*x + 1000*x^3 - 1200*x^4 + 336*x^5 - 32*x^6 + 6250)) - log(x + 2)*(3125
*x + 5625*x^2 - 4750*x^3 + 200*x^4 + 864*x^5 - 304*x^6 + 32*x^7 - 6250) - 9395*x + 1867*x^2 + 8632*x^3 - 6351*
x^4 + 566*x^5 + 832*x^6 - 304*x^7 + 32*x^8 + 3125)/(log(x + 2)*(6250*x - 9375*x^2 + 3750*x^3 + 1000*x^4 - 1200
*x^5 + 336*x^6 - 32*x^7) + log((625*x - log(x + 2)*(600*x^2 - 1000*x - 160*x^3 + 16*x^4 + 625) - 1001*x^2 + 60
0*x^3 - 160*x^4 + 16*x^5)/(600*x^2 - 1000*x - 160*x^3 + 16*x^4 + 625))*(6250*x - 9385*x^2 + 3749*x^3 + 1002*x^
4 - 1200*x^5 + 336*x^6 - 32*x^7 - log(x + 2)*(3750*x^2 - 9375*x + 1000*x^3 - 1200*x^4 + 336*x^5 - 32*x^6 + 625
0)) - 6250*x^2 + 9385*x^3 - 3749*x^4 - 1002*x^5 + 1200*x^6 - 336*x^7 + 32*x^8),x)

[Out]

x + log(x - log((625*x - log(x + 2)*(2*x - 5)^4 - 1001*x^2 + 600*x^3 - 160*x^4 + 16*x^5)/(2*x - 5)^4))

________________________________________________________________________________________

sympy [B]  time = 5.16, size = 75, normalized size = 2.59 x+log(x+log(16x5160x4+600x31001x2+625x+(16x4+160x3600x2+1000x625)log(x+2)16x4160x3+600x21000x+625))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((32*x**6-336*x**5+1200*x**4-1000*x**3-3750*x**2+9375*x-6250)*ln(2+x)-32*x**7+336*x**6-1200*x**5+10
02*x**4+3749*x**3-9385*x**2+6250*x)*ln(((-16*x**4+160*x**3-600*x**2+1000*x-625)*ln(2+x)+16*x**5-160*x**4+600*x
**3-1001*x**2+625*x)/(16*x**4-160*x**3+600*x**2-1000*x+625))+(-32*x**7+304*x**6-864*x**5-200*x**4+4750*x**3-56
25*x**2-3125*x+6250)*ln(2+x)+32*x**8-304*x**7+832*x**6+566*x**5-6351*x**4+8632*x**3+1867*x**2-9395*x+3125)/(((
32*x**6-336*x**5+1200*x**4-1000*x**3-3750*x**2+9375*x-6250)*ln(2+x)-32*x**7+336*x**6-1200*x**5+1002*x**4+3749*
x**3-9385*x**2+6250*x)*ln(((-16*x**4+160*x**3-600*x**2+1000*x-625)*ln(2+x)+16*x**5-160*x**4+600*x**3-1001*x**2
+625*x)/(16*x**4-160*x**3+600*x**2-1000*x+625))+(-32*x**7+336*x**6-1200*x**5+1000*x**4+3750*x**3-9375*x**2+625
0*x)*ln(2+x)+32*x**8-336*x**7+1200*x**6-1002*x**5-3749*x**4+9385*x**3-6250*x**2),x)

[Out]

x + log(-x + log((16*x**5 - 160*x**4 + 600*x**3 - 1001*x**2 + 625*x + (-16*x**4 + 160*x**3 - 600*x**2 + 1000*x
 - 625)*log(x + 2))/(16*x**4 - 160*x**3 + 600*x**2 - 1000*x + 625)))

________________________________________________________________________________________