3.73.13 8+2x44x4log(x2)log(log(x2))+5xlog(x2)log2(log(x2))(4xx5)log(x2)log(log(x2))+5x2log(x2)log2(log(x2))dx

Optimal. Leaf size=21 log(x+4+x45log(log(x2)))

________________________________________________________________________________________

Rubi [F]  time = 2.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 8+2x44x4log(x2)log(log(x2))+5xlog(x2)log2(log(x2))(4xx5)log(x2)log(log(x2))+5x2log(x2)log2(log(x2))dx

Verification is not applicable to the result.

[In]

Int[(-8 + 2*x^4 - 4*x^4*Log[x^2]*Log[Log[x^2]] + 5*x*Log[x^2]*Log[Log[x^2]]^2)/((4*x - x^5)*Log[x^2]*Log[Log[x
^2]] + 5*x^2*Log[x^2]*Log[Log[x^2]]^2),x]

[Out]

Log[x] - Log[Log[Log[x^2]]] + 4*Defer[Int][1/(x*(-4 + x^4 - 5*x*Log[Log[x^2]])), x] + 3*Defer[Int][x^3/(-4 + x
^4 - 5*x*Log[Log[x^2]]), x] - 10*Defer[Int][1/(Log[x^2]*(-4 + x^4 - 5*x*Log[Log[x^2]])), x]

Rubi steps

integral=8+2x44x4log(x2)log(log(x2))+5xlog(x2)log2(log(x2))xlog(x2)log(log(x2))(4x4+5xlog(log(x2)))dx=(1x2xlog(x2)log(log(x2))+10x+4log(x2)+3x4log(x2)xlog(x2)(4+x45xlog(log(x2))))dx=log(x)21xlog(x2)log(log(x2))dx+10x+4log(x2)+3x4log(x2)xlog(x2)(4+x45xlog(log(x2)))dx=log(x)+(4x(4+x45xlog(log(x2)))+3x34+x45xlog(log(x2))10log(x2)(4+x45xlog(log(x2))))dxSubst(1xlog(x)dx,x,log(x2))=log(x)+3x34+x45xlog(log(x2))dx+41x(4+x45xlog(log(x2)))dx101log(x2)(4+x45xlog(log(x2)))dxSubst(1xdx,x,log(log(x2)))=log(x)log(log(log(x2)))+3x34+x45xlog(log(x2))dx+41x(4+x45xlog(log(x2)))dx101log(x2)(4+x45xlog(log(x2)))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 25, normalized size = 1.19 log(log(log(x2)))+log(4x4+5xlog(log(x2)))

Antiderivative was successfully verified.

[In]

Integrate[(-8 + 2*x^4 - 4*x^4*Log[x^2]*Log[Log[x^2]] + 5*x*Log[x^2]*Log[Log[x^2]]^2)/((4*x - x^5)*Log[x^2]*Log
[Log[x^2]] + 5*x^2*Log[x^2]*Log[Log[x^2]]^2),x]

[Out]

-Log[Log[Log[x^2]]] + Log[4 - x^4 + 5*x*Log[Log[x^2]]]

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 34, normalized size = 1.62 12log(x2)+log(x45xlog(log(x2))4x)log(log(log(x2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x^2)*log(log(x^2))^2-4*x^4*log(x^2)*log(log(x^2))+2*x^4-8)/(5*x^2*log(x^2)*log(log(x^2))^2+
(-x^5+4*x)*log(x^2)*log(log(x^2))),x, algorithm="fricas")

[Out]

1/2*log(x^2) + log(-(x^4 - 5*x*log(log(x^2)) - 4)/x) - log(log(log(x^2)))

________________________________________________________________________________________

giac [A]  time = 0.30, size = 25, normalized size = 1.19 log(x4+5xlog(log(x2))+4)log(log(log(x2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x^2)*log(log(x^2))^2-4*x^4*log(x^2)*log(log(x^2))+2*x^4-8)/(5*x^2*log(x^2)*log(log(x^2))^2+
(-x^5+4*x)*log(x^2)*log(log(x^2))),x, algorithm="giac")

[Out]

log(-x^4 + 5*x*log(log(x^2)) + 4) - log(log(log(x^2)))

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 5xln(x2)ln(ln(x2))24x4ln(x2)ln(ln(x2))+2x485x2ln(x2)ln(ln(x2))2+(x5+4x)ln(x2)ln(ln(x2))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x*ln(x^2)*ln(ln(x^2))^2-4*x^4*ln(x^2)*ln(ln(x^2))+2*x^4-8)/(5*x^2*ln(x^2)*ln(ln(x^2))^2+(-x^5+4*x)*ln(x
^2)*ln(ln(x^2))),x)

[Out]

int((5*x*ln(x^2)*ln(ln(x^2))^2-4*x^4*ln(x^2)*ln(ln(x^2))+2*x^4-8)/(5*x^2*ln(x^2)*ln(ln(x^2))^2+(-x^5+4*x)*ln(x
^2)*ln(ln(x^2))),x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 34, normalized size = 1.62 log(x)+log(x45xlog(2)5xlog(log(x))45x)log(log(2)+log(log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x^2)*log(log(x^2))^2-4*x^4*log(x^2)*log(log(x^2))+2*x^4-8)/(5*x^2*log(x^2)*log(log(x^2))^2+
(-x^5+4*x)*log(x^2)*log(log(x^2))),x, algorithm="maxima")

[Out]

log(x) + log(-1/5*(x^4 - 5*x*log(2) - 5*x*log(log(x)) - 4)/x) - log(log(2) + log(log(x)))

________________________________________________________________________________________

mupad [B]  time = 4.73, size = 78, normalized size = 3.71 ln(20xln(ln(x2))4x4+16ln(x2))ln(ln(ln(x2))(4ln(x2)10x+3x4ln(x2))ln(x2))+ln(4ln(x2)10x+3x4ln(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^4 + 5*x*log(x^2)*log(log(x^2))^2 - 4*x^4*log(x^2)*log(log(x^2)) - 8)/(5*x^2*log(x^2)*log(log(x^2))^2
+ log(x^2)*log(log(x^2))*(4*x - x^5)),x)

[Out]

log((20*x*log(log(x^2)) - 4*x^4 + 16)/log(x^2)) - log((log(log(x^2))*(4*log(x^2) - 10*x + 3*x^4*log(x^2)))/log
(x^2)) + log(4*log(x^2) - 10*x + 3*x^4*log(x^2))

________________________________________________________________________________________

sympy [A]  time = 0.75, size = 29, normalized size = 1.38 log(x)+log(log(log(x2))+82x410x)log(log(log(x2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*ln(x**2)*ln(ln(x**2))**2-4*x**4*ln(x**2)*ln(ln(x**2))+2*x**4-8)/(5*x**2*ln(x**2)*ln(ln(x**2))**
2+(-x**5+4*x)*ln(x**2)*ln(ln(x**2))),x)

[Out]

log(x) + log(log(log(x**2)) + (8 - 2*x**4)/(10*x)) - log(log(log(x**2)))

________________________________________________________________________________________