Optimal. Leaf size=25 \[ x-x \left (e^{4+e^2+e^x+2 x-x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 51, normalized size of antiderivative = 2.04, number of steps used = 2, number of rules used = 1, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {2288} \begin {gather*} -x^2-\frac {e^{-x^2+2 x+e^x+e^2+4} \left (-2 x^2+e^x x+2 x\right )}{-2 x+e^x+2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-x^2+\int e^{4+e^2+e^x+2 x-x^2} \left (-1-2 x-e^x x+2 x^2\right ) \, dx\\ &=x-x^2-\frac {e^{4+e^2+e^x+2 x-x^2} \left (2 x+e^x x-2 x^2\right )}{2+e^x-2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 1.08 \begin {gather*} \left (1-e^{4+e^2+e^x+2 x-x^2}-x\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 25, normalized size = 1.00 \begin {gather*} -x^{2} - x e^{\left (-x^{2} + 2 \, x + e^{2} + e^{x} + 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 1.00 \begin {gather*} -x^{2} - x e^{\left (-x^{2} + 2 \, x + e^{2} + e^{x} + 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.04
method | result | size |
default | \(x -{\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{2}-x^{2}+2 x +4} x -x^{2}\) | \(26\) |
norman | \(x -{\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{2}-x^{2}+2 x +4} x -x^{2}\) | \(26\) |
risch | \(x -{\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{2}-x^{2}+2 x +4} x -x^{2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 1.00 \begin {gather*} -x^{2} - x e^{\left (-x^{2} + 2 \, x + e^{2} + e^{x} + 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 28, normalized size = 1.12 \begin {gather*} x-x^2-x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.88 \begin {gather*} - x^{2} - x e^{- x^{2} + 2 x + e^{x} + 4 + e^{2}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________