3.73.17 (12x+e4+e2+ex+2xx2(12xexx+2x2))dx

Optimal. Leaf size=25 xx(e4+e2+ex+2xx2+x)

________________________________________________________________________________________

Rubi [B]  time = 0.12, antiderivative size = 51, normalized size of antiderivative = 2.04, number of steps used = 2, number of rules used = 1, integrand size = 40, number of rulesintegrand size = 0.025, Rules used = {2288} x2ex2+2x+ex+e2+4(2x2+exx+2x)2x+ex+2+x

Antiderivative was successfully verified.

[In]

Int[1 - 2*x + E^(4 + E^2 + E^x + 2*x - x^2)*(-1 - 2*x - E^x*x + 2*x^2),x]

[Out]

x - x^2 - (E^(4 + E^2 + E^x + 2*x - x^2)*(2*x + E^x*x - 2*x^2))/(2 + E^x - 2*x)

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=xx2+e4+e2+ex+2xx2(12xexx+2x2)dx=xx2e4+e2+ex+2xx2(2x+exx2x2)2+ex2x

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 27, normalized size = 1.08 (1e4+e2+ex+2xx2x)x

Antiderivative was successfully verified.

[In]

Integrate[1 - 2*x + E^(4 + E^2 + E^x + 2*x - x^2)*(-1 - 2*x - E^x*x + 2*x^2),x]

[Out]

(1 - E^(4 + E^2 + E^x + 2*x - x^2) - x)*x

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 25, normalized size = 1.00 x2xe(x2+2x+e2+ex+4)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x+2*x^2-2*x-1)*exp(exp(x)+exp(2)-x^2+2*x+4)+1-2*x,x, algorithm="fricas")

[Out]

-x^2 - x*e^(-x^2 + 2*x + e^2 + e^x + 4) + x

________________________________________________________________________________________

giac [A]  time = 0.22, size = 25, normalized size = 1.00 x2xe(x2+2x+e2+ex+4)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x+2*x^2-2*x-1)*exp(exp(x)+exp(2)-x^2+2*x+4)+1-2*x,x, algorithm="giac")

[Out]

-x^2 - x*e^(-x^2 + 2*x + e^2 + e^x + 4) + x

________________________________________________________________________________________

maple [A]  time = 0.05, size = 26, normalized size = 1.04




method result size



default xeex+e2x2+2x+4xx2 26
norman xeex+e2x2+2x+4xx2 26
risch xeex+e2x2+2x+4xx2 26



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-exp(x)*x+2*x^2-2*x-1)*exp(exp(x)+exp(2)-x^2+2*x+4)+1-2*x,x,method=_RETURNVERBOSE)

[Out]

x-exp(exp(x)+exp(2)-x^2+2*x+4)*x-x^2

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 25, normalized size = 1.00 x2xe(x2+2x+e2+ex+4)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x+2*x^2-2*x-1)*exp(exp(x)+exp(2)-x^2+2*x+4)+1-2*x,x, algorithm="maxima")

[Out]

-x^2 - x*e^(-x^2 + 2*x + e^2 + e^x + 4) + x

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 28, normalized size = 1.12 xx2xe2xeexe4ex2ee2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1 - exp(2*x + exp(2) + exp(x) - x^2 + 4)*(2*x + x*exp(x) - 2*x^2 + 1) - 2*x,x)

[Out]

x - x^2 - x*exp(2*x)*exp(exp(x))*exp(4)*exp(-x^2)*exp(exp(2))

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 22, normalized size = 0.88 x2xex2+2x+ex+4+e2+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x+2*x**2-2*x-1)*exp(exp(x)+exp(2)-x**2+2*x+4)+1-2*x,x)

[Out]

-x**2 - x*exp(-x**2 + 2*x + exp(x) + 4 + exp(2)) + x

________________________________________________________________________________________