3.73.23 ee12(ee4x+2x)+12(ee4x+2x)(26+13e4+e4x)dx

Optimal. Leaf size=19 26eeee4x2+x

________________________________________________________________________________________

Rubi [F]  time = 0.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(e12(ee4x+2x)+12(ee4x+2x))(26+13e4+e4x)dx

Verification is not applicable to the result.

[In]

Int[E^(E^((E^(E^4*x) + 2*x)/2) + (E^(E^4*x) + 2*x)/2)*(26 + 13*E^(4 + E^4*x)),x]

[Out]

26*Defer[Int][E^((E^(E^4*x) + 2*E^(E^(E^4*x)/2 + x) + 2*x)/2), x] + 13*Defer[Int][E^((8 + E^(E^4*x) + 2*E^(E^(
E^4*x)/2 + x) + 2*(1 + E^4)*x)/2), x]

Rubi steps

integral=13e12(ee4x+2eee4x2+x+2x)(2+e4+e4x)dx=13e12(ee4x+2eee4x2+x+2x)(2+e4+e4x)dx=13(2e12(ee4x+2eee4x2+x+2x)+exp(4+e4x+12(ee4x+2eee4x2+x+2x)))dx=13exp(4+e4x+12(ee4x+2eee4x2+x+2x))dx+26e12(ee4x+2eee4x2+x+2x)dx=13exp(12(8+ee4x+2eee4x2+x+2(1+e4)x))dx+26e12(ee4x+2eee4x2+x+2x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 19, normalized size = 1.00 26eeee4x2+x

Antiderivative was successfully verified.

[In]

Integrate[E^(E^((E^(E^4*x) + 2*x)/2) + (E^(E^4*x) + 2*x)/2)*(26 + 13*E^(4 + E^4*x)),x]

[Out]

26*E^E^(E^(E^4*x)/2 + x)

________________________________________________________________________________________

fricas [B]  time = 0.70, size = 60, normalized size = 3.16 26e(12(2xe4+e(xe4+4)+2e(12(2xe4+e(xe4+4))e(4)+4))e(4)12(2xe4+e(xe4+4))e(4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((13*exp(4)*exp(x*exp(4))+26)*exp(1/2*exp(x*exp(4))+x)*exp(exp(1/2*exp(x*exp(4))+x)),x, algorithm="fr
icas")

[Out]

26*e^(1/2*(2*x*e^4 + e^(x*e^4 + 4) + 2*e^(1/2*(2*x*e^4 + e^(x*e^4 + 4))*e^(-4) + 4))*e^(-4) - 1/2*(2*x*e^4 + e
^(x*e^4 + 4))*e^(-4))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 13(e(xe4+4)+2)e(x+12e(xe4)+e(x+12e(xe4)))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((13*exp(4)*exp(x*exp(4))+26)*exp(1/2*exp(x*exp(4))+x)*exp(exp(1/2*exp(x*exp(4))+x)),x, algorithm="gi
ac")

[Out]

integrate(13*(e^(x*e^4 + 4) + 2)*e^(x + 1/2*e^(x*e^4) + e^(x + 1/2*e^(x*e^4))), x)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 14, normalized size = 0.74




method result size



norman 26eeexe42+x 14
risch 26eeexe42+x 14



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((13*exp(4)*exp(x*exp(4))+26)*exp(1/2*exp(x*exp(4))+x)*exp(exp(1/2*exp(x*exp(4))+x)),x,method=_RETURNVERBOS
E)

[Out]

26*exp(exp(1/2*exp(x*exp(4))+x))

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 13, normalized size = 0.68 26e(e(x+12e(xe4)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((13*exp(4)*exp(x*exp(4))+26)*exp(1/2*exp(x*exp(4))+x)*exp(exp(1/2*exp(x*exp(4))+x)),x, algorithm="ma
xima")

[Out]

26*e^(e^(x + 1/2*e^(x*e^4)))

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 14, normalized size = 0.74 26eeexe42ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x + exp(x*exp(4))/2)*exp(exp(x + exp(x*exp(4))/2))*(13*exp(4)*exp(x*exp(4)) + 26),x)

[Out]

26*exp(exp(exp(x*exp(4))/2)*exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.40, size = 14, normalized size = 0.74 26eex+exe42

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((13*exp(4)*exp(x*exp(4))+26)*exp(1/2*exp(x*exp(4))+x)*exp(exp(1/2*exp(x*exp(4))+x)),x)

[Out]

26*exp(exp(x + exp(x*exp(4))/2))

________________________________________________________________________________________