Optimal. Leaf size=22 \[ -\log \left (2+x (x-\log (25))^2 (5-\log (\log (x)))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 21.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+2 x \log (25)-\log ^2(25)+\left (15 x^2-20 x \log (25)+5 \log ^2(25)\right ) \log (x)+\left (-3 x^2+4 x \log (25)-\log ^2(25)\right ) \log (x) \log (\log (x))}{\left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)\right ) \log (x)+\left (x^3-2 x^2 \log (25)+x \log ^2(25)\right ) \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(x-\log (25)) (x-\log (25)+(3 x-\log (25)) \log (x) (-5+\log (\log (x))))}{\log (x) \left (2+5 x^3-10 x^2 \log (25)+5 x \log ^2(25)-x (x-\log (25))^2 \log (\log (x))\right )} \, dx\\ &=\int \left (\frac {-3 x+\log (25)}{x (x-\log (25))}+\frac {-x^4+3 x^3 \log (25)-3 x^2 \log ^2(25)+x \log ^3(25)-6 x \log (x)+\log (625) \log (x)}{x (x-\log (25)) \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )}\right ) \, dx\\ &=\int \frac {-3 x+\log (25)}{x (x-\log (25))} \, dx+\int \frac {-x^4+3 x^3 \log (25)-3 x^2 \log ^2(25)+x \log ^3(25)-6 x \log (x)+\log (625) \log (x)}{x (x-\log (25)) \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )} \, dx\\ &=\int \left (-\frac {1}{x}-\frac {2}{x-\log (25)}\right ) \, dx+\int \frac {x (x-\log (25))^3-(-6 x+\log (625)) \log (x)}{x (x-\log (25)) \log (x) \left (2+5 x^3-10 x^2 \log (25)+5 x \log ^2(25)-x (x-\log (25))^2 \log (\log (x))\right )} \, dx\\ &=-\log (x)-2 \log (x-\log (25))+\int \left (\frac {x^4-3 x^3 \log (25)+3 x^2 \log ^2(25)-x \log ^3(25)+6 x \log (x)-\log (625) \log (x)}{x \log (25) \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )}+\frac {-x^4+3 x^3 \log (25)-3 x^2 \log ^2(25)+x \log ^3(25)-6 x \log (x)+\log (625) \log (x)}{(x-\log (25)) \log (25) \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )}\right ) \, dx\\ &=-\log (x)-2 \log (x-\log (25))+\frac {\int \frac {x^4-3 x^3 \log (25)+3 x^2 \log ^2(25)-x \log ^3(25)+6 x \log (x)-\log (625) \log (x)}{x \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )} \, dx}{\log (25)}+\frac {\int \frac {-x^4+3 x^3 \log (25)-3 x^2 \log ^2(25)+x \log ^3(25)-6 x \log (x)+\log (625) \log (x)}{(x-\log (25)) \log (x) \left (-2-5 x^3+10 x^2 \log (25)-5 x \log ^2(25)+x^3 \log (\log (x))-2 x^2 \log (25) \log (\log (x))+x \log ^2(25) \log (\log (x))\right )} \, dx}{\log (25)}\\ &=-\log (x)-2 \log (x-\log (25))+\frac {\int \frac {-x (x-\log (25))^3-(6 x-\log (625)) \log (x)}{x \log (x) \left (2+5 x^3-10 x^2 \log (25)+5 x \log ^2(25)-x (x-\log (25))^2 \log (\log (x))\right )} \, dx}{\log (25)}+\frac {\int \frac {x (x-\log (25))^3-(-6 x+\log (625)) \log (x)}{(x-\log (25)) \log (x) \left (2+5 x^3-10 x^2 \log (25)+5 x \log ^2(25)-x (x-\log (25))^2 \log (\log (x))\right )} \, dx}{\log (25)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.80, size = 52, normalized size = 2.36 \begin {gather*} -\log \left (2+5 x^3-10 x^2 \log (25)+5 x \log ^2(25)-x^3 \log (\log (x))+2 x^2 \log (25) \log (\log (x))-x \log ^2(25) \log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 83, normalized size = 3.77 \begin {gather*} -2 \, \log \left (x - 2 \, \log \relax (5)\right ) - \log \relax (x) - \log \left (-\frac {5 \, x^{3} - 20 \, x^{2} \log \relax (5) + 20 \, x \log \relax (5)^{2} - {\left (x^{3} - 4 \, x^{2} \log \relax (5) + 4 \, x \log \relax (5)^{2}\right )} \log \left (\log \relax (x)\right ) + 2}{x^{3} - 4 \, x^{2} \log \relax (5) + 4 \, x \log \relax (5)^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 51, normalized size = 2.32 \begin {gather*} -\log \left (x^{3} \log \left (\log \relax (x)\right ) - 4 \, x^{2} \log \relax (5) \log \left (\log \relax (x)\right ) + 4 \, x \log \relax (5)^{2} \log \left (\log \relax (x)\right ) - 5 \, x^{3} + 20 \, x^{2} \log \relax (5) - 20 \, x \log \relax (5)^{2} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 65, normalized size = 2.95
method | result | size |
risch | \(-2 \ln \left (x -2 \ln \relax (5)\right )-\ln \relax (x )-\ln \left (\ln \left (\ln \relax (x )\right )-\frac {20 x \ln \relax (5)^{2}-20 x^{2} \ln \relax (5)+5 x^{3}+2}{x \left (4 \ln \relax (5)^{2}-4 x \ln \relax (5)+x^{2}\right )}\right )\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 83, normalized size = 3.77 \begin {gather*} -2 \, \log \left (x - 2 \, \log \relax (5)\right ) - \log \relax (x) - \log \left (-\frac {5 \, x^{3} - 20 \, x^{2} \log \relax (5) + 20 \, x \log \relax (5)^{2} - {\left (x^{3} - 4 \, x^{2} \log \relax (5) + 4 \, x \log \relax (5)^{2}\right )} \log \left (\log \relax (x)\right ) + 2}{x^{3} - 4 \, x^{2} \log \relax (5) + 4 \, x \log \relax (5)^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {4\,{\ln \relax (5)}^2-\ln \relax (x)\,\left (15\,x^2-40\,\ln \relax (5)\,x+20\,{\ln \relax (5)}^2\right )-4\,x\,\ln \relax (5)+x^2+\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (3\,x^2-8\,\ln \relax (5)\,x+4\,{\ln \relax (5)}^2\right )}{\ln \relax (x)\,\left (5\,x^3-20\,\ln \relax (5)\,x^2+20\,{\ln \relax (5)}^2\,x+2\right )-\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (x^3-4\,\ln \relax (5)\,x^2+4\,{\ln \relax (5)}^2\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.28, size = 65, normalized size = 2.95 \begin {gather*} - \log {\relax (x )} - 2 \log {\left (x - 2 \log {\relax (5 )} \right )} - \log {\left (\log {\left (\log {\relax (x )} \right )} + \frac {- 5 x^{3} + 20 x^{2} \log {\relax (5 )} - 20 x \log {\relax (5 )}^{2} - 2}{x^{3} - 4 x^{2} \log {\relax (5 )} + 4 x \log {\relax (5 )}^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________