3.73.41 (50+e3x(1+x)+292x+381x2+140x3+15x4)dx

Optimal. Leaf size=30 x(e3x+x+(3+2x)x(1+x)(5+x)2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 46, normalized size of antiderivative = 1.53, number of steps used = 3, number of rules used = 2, integrand size = 31, number of rulesintegrand size = 0.065, Rules used = {2176, 2194} 3x5+35x4+127x3+146x2+50xe3x+e3x(1x)

Antiderivative was successfully verified.

[In]

Int[50 + E^(3 - x)*(-1 + x) + 292*x + 381*x^2 + 140*x^3 + 15*x^4,x]

[Out]

-E^(3 - x) + E^(3 - x)*(1 - x) + 50*x + 146*x^2 + 127*x^3 + 35*x^4 + 3*x^5

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=50x+146x2+127x3+35x4+3x5+e3x(1+x)dx=e3x(1x)+50x+146x2+127x3+35x4+3x5+e3xdx=e3x+e3x(1x)+50x+146x2+127x3+35x4+3x5

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 34, normalized size = 1.13 50xe3xx+146x2+127x3+35x4+3x5

Antiderivative was successfully verified.

[In]

Integrate[50 + E^(3 - x)*(-1 + x) + 292*x + 381*x^2 + 140*x^3 + 15*x^4,x]

[Out]

50*x - E^(3 - x)*x + 146*x^2 + 127*x^3 + 35*x^4 + 3*x^5

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 33, normalized size = 1.10 3x5+35x4+127x3+146x2xe(x+3)+50x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x-1)*exp(3-x)+15*x^4+140*x^3+381*x^2+292*x+50,x, algorithm="fricas")

[Out]

3*x^5 + 35*x^4 + 127*x^3 + 146*x^2 - x*e^(-x + 3) + 50*x

________________________________________________________________________________________

giac [A]  time = 0.15, size = 33, normalized size = 1.10 3x5+35x4+127x3+146x2xe(x+3)+50x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x-1)*exp(3-x)+15*x^4+140*x^3+381*x^2+292*x+50,x, algorithm="giac")

[Out]

3*x^5 + 35*x^4 + 127*x^3 + 146*x^2 - x*e^(-x + 3) + 50*x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 34, normalized size = 1.13




method result size



norman 50x+146x2+127x3+35x4+3x5xe3x 34
risch 50x+146x2+127x3+35x4+3x5xe3x 34
default 50x+e3x(3x)3e3x+146x2+127x3+35x4+3x5 45
derivativedivides 146(3x)22778+926x+127x3+35x4+3x5+e3x(3x)3e3x 50



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x-1)*exp(3-x)+15*x^4+140*x^3+381*x^2+292*x+50,x,method=_RETURNVERBOSE)

[Out]

50*x+146*x^2+127*x^3+35*x^4+3*x^5-x*exp(3-x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 33, normalized size = 1.10 3x5+35x4+127x3+146x2xe(x+3)+50x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x-1)*exp(3-x)+15*x^4+140*x^3+381*x^2+292*x+50,x, algorithm="maxima")

[Out]

3*x^5 + 35*x^4 + 127*x^3 + 146*x^2 - x*e^(-x + 3) + 50*x

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 30, normalized size = 1.00 x(146xe3x+127x2+35x3+3x4+50)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(292*x + exp(3 - x)*(x - 1) + 381*x^2 + 140*x^3 + 15*x^4 + 50,x)

[Out]

x*(146*x - exp(3 - x) + 127*x^2 + 35*x^3 + 3*x^4 + 50)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 29, normalized size = 0.97 3x5+35x4+127x3+146x2xe3x+50x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x-1)*exp(3-x)+15*x**4+140*x**3+381*x**2+292*x+50,x)

[Out]

3*x**5 + 35*x**4 + 127*x**3 + 146*x**2 - x*exp(3 - x) + 50*x

________________________________________________________________________________________