Optimal. Leaf size=13 \[ 1-\frac {8 (9+x)}{\log (1+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 20, normalized size of antiderivative = 1.54, number of steps used = 13, number of rules used = 10, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {6741, 12, 6742, 2411, 2353, 2297, 2298, 2302, 30, 2389} \begin {gather*} -\frac {8 (x+1)}{\log (x+1)}-\frac {64}{\log (x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 (9+x-\log (1+x)-x \log (1+x))}{(1+x) \log ^2(1+x)} \, dx\\ &=8 \int \frac {9+x-\log (1+x)-x \log (1+x)}{(1+x) \log ^2(1+x)} \, dx\\ &=8 \int \left (\frac {9+x}{(1+x) \log ^2(1+x)}-\frac {1}{\log (1+x)}\right ) \, dx\\ &=8 \int \frac {9+x}{(1+x) \log ^2(1+x)} \, dx-8 \int \frac {1}{\log (1+x)} \, dx\\ &=8 \operatorname {Subst}\left (\int \frac {8+x}{x \log ^2(x)} \, dx,x,1+x\right )-8 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,1+x\right )\\ &=-8 \text {li}(1+x)+8 \operatorname {Subst}\left (\int \left (\frac {1}{\log ^2(x)}+\frac {8}{x \log ^2(x)}\right ) \, dx,x,1+x\right )\\ &=-8 \text {li}(1+x)+8 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,1+x\right )+64 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,1+x\right )\\ &=-\frac {8 (1+x)}{\log (1+x)}-8 \text {li}(1+x)+8 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,1+x\right )+64 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (1+x)\right )\\ &=-\frac {64}{\log (1+x)}-\frac {8 (1+x)}{\log (1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 13, normalized size = 1.00 \begin {gather*} \frac {8 (-9-x)}{\log (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8 \, {\left (x + 9\right )}}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8 \, {\left (x + 9\right )}}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 12, normalized size = 0.92
method | result | size |
risch | \(-\frac {8 \left (x +9\right )}{\ln \left (x +1\right )}\) | \(12\) |
norman | \(\frac {-8 x -72}{\ln \left (x +1\right )}\) | \(13\) |
derivativedivides | \(-\frac {8 \left (x +1\right )}{\ln \left (x +1\right )}-\frac {64}{\ln \left (x +1\right )}\) | \(21\) |
default | \(-\frac {8 \left (x +1\right )}{\ln \left (x +1\right )}-\frac {64}{\ln \left (x +1\right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 1.38 \begin {gather*} -\frac {8 \, x}{\log \left (x + 1\right )} - \frac {72}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8\,\left (x+9\right )}{\ln \left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.77 \begin {gather*} \frac {- 8 x - 72}{\log {\left (x + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________