3.73.49 72+8x+(88x)log(1+x)(1+x)log2(1+x)dx

Optimal. Leaf size=13 18(9+x)log(1+x)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 20, normalized size of antiderivative = 1.54, number of steps used = 13, number of rules used = 10, integrand size = 27, number of rulesintegrand size = 0.370, Rules used = {6741, 12, 6742, 2411, 2353, 2297, 2298, 2302, 30, 2389} 8(x+1)log(x+1)64log(x+1)

Antiderivative was successfully verified.

[In]

Int[(72 + 8*x + (-8 - 8*x)*Log[1 + x])/((1 + x)*Log[1 + x]^2),x]

[Out]

-64/Log[1 + x] - (8*(1 + x))/Log[1 + x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2298

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2411

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=8(9+xlog(1+x)xlog(1+x))(1+x)log2(1+x)dx=89+xlog(1+x)xlog(1+x)(1+x)log2(1+x)dx=8(9+x(1+x)log2(1+x)1log(1+x))dx=89+x(1+x)log2(1+x)dx81log(1+x)dx=8Subst(8+xxlog2(x)dx,x,1+x)8Subst(1log(x)dx,x,1+x)=8li(1+x)+8Subst((1log2(x)+8xlog2(x))dx,x,1+x)=8li(1+x)+8Subst(1log2(x)dx,x,1+x)+64Subst(1xlog2(x)dx,x,1+x)=8(1+x)log(1+x)8li(1+x)+8Subst(1log(x)dx,x,1+x)+64Subst(1x2dx,x,log(1+x))=64log(1+x)8(1+x)log(1+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 13, normalized size = 1.00 8(9x)log(1+x)

Antiderivative was successfully verified.

[In]

Integrate[(72 + 8*x + (-8 - 8*x)*Log[1 + x])/((1 + x)*Log[1 + x]^2),x]

[Out]

(8*(-9 - x))/Log[1 + x]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 11, normalized size = 0.85 8(x+9)log(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-8*x-8)*log(x+1)+8*x+72)/(x+1)/log(x+1)^2,x, algorithm="fricas")

[Out]

-8*(x + 9)/log(x + 1)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 11, normalized size = 0.85 8(x+9)log(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-8*x-8)*log(x+1)+8*x+72)/(x+1)/log(x+1)^2,x, algorithm="giac")

[Out]

-8*(x + 9)/log(x + 1)

________________________________________________________________________________________

maple [A]  time = 0.12, size = 12, normalized size = 0.92




method result size



risch 8(x+9)ln(x+1) 12
norman 8x72ln(x+1) 13
derivativedivides 8(x+1)ln(x+1)64ln(x+1) 21
default 8(x+1)ln(x+1)64ln(x+1) 21



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-8*x-8)*ln(x+1)+8*x+72)/(x+1)/ln(x+1)^2,x,method=_RETURNVERBOSE)

[Out]

-8*(x+9)/ln(x+1)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 18, normalized size = 1.38 8xlog(x+1)72log(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-8*x-8)*log(x+1)+8*x+72)/(x+1)/log(x+1)^2,x, algorithm="maxima")

[Out]

-8*x/log(x + 1) - 72/log(x + 1)

________________________________________________________________________________________

mupad [B]  time = 4.43, size = 11, normalized size = 0.85 8(x+9)ln(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x - log(x + 1)*(8*x + 8) + 72)/(log(x + 1)^2*(x + 1)),x)

[Out]

-(8*(x + 9))/log(x + 1)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 10, normalized size = 0.77 8x72log(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-8*x-8)*ln(x+1)+8*x+72)/(x+1)/ln(x+1)**2,x)

[Out]

(-8*x - 72)/log(x + 1)

________________________________________________________________________________________