3.73.51 (1+x)log(x)+(4x+(3x)log(x)+log2(x))log(4+xlog(x))(4x+log(x))log2(4+xlog(x))dx

Optimal. Leaf size=16 1+xlog(x)log(4+xlog(x))

________________________________________________________________________________________

Rubi [F]  time = 0.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (1+x)log(x)+(4x+(3x)log(x)+log2(x))log(4+xlog(x))(4x+log(x))log2(4+xlog(x))dx

Verification is not applicable to the result.

[In]

Int[((-1 + x)*Log[x] + (-4 - x + (-3 - x)*Log[x] + Log[x]^2)*Log[4 + x - Log[x]])/((-4 - x + Log[x])*Log[4 + x
 - Log[x]]^2),x]

[Out]

Defer[Int][Log[x]/((4 + x - Log[x])*Log[4 + x - Log[x]]^2), x] - Defer[Int][(x*Log[x])/((4 + x - Log[x])*Log[4
 + x - Log[x]]^2), x] + Defer[Int][Log[4 + x - Log[x]]^(-1), x] + Defer[Int][Log[x]/Log[4 + x - Log[x]], x]

Rubi steps

integral=((1+x)log(x)(4+xlog(x))log2(4+xlog(x))+1+log(x)log(4+xlog(x)))dx=(1+x)log(x)(4+xlog(x))log2(4+xlog(x))dx+1+log(x)log(4+xlog(x))dx=(log(x)(4+xlog(x))log2(4+xlog(x))+xlog(x)(4+xlog(x))log2(4+xlog(x)))dx+(1log(4+xlog(x))+log(x)log(4+xlog(x)))dx=log(x)(4+xlog(x))log2(4+xlog(x))dxxlog(x)(4+xlog(x))log2(4+xlog(x))dx+1log(4+xlog(x))dx+log(x)log(4+xlog(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 14, normalized size = 0.88 xlog(x)log(4+xlog(x))

Antiderivative was successfully verified.

[In]

Integrate[((-1 + x)*Log[x] + (-4 - x + (-3 - x)*Log[x] + Log[x]^2)*Log[4 + x - Log[x]])/((-4 - x + Log[x])*Log
[4 + x - Log[x]]^2),x]

[Out]

(x*Log[x])/Log[4 + x - Log[x]]

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 14, normalized size = 0.88 xlog(x)log(xlog(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(-3-x)*log(x)-x-4)*log(-log(x)+4+x)+(x-1)*log(x))/(log(x)-x-4)/log(-log(x)+4+x)^2,x, algo
rithm="fricas")

[Out]

x*log(x)/log(x - log(x) + 4)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 14, normalized size = 0.88 xlog(x)log(xlog(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(-3-x)*log(x)-x-4)*log(-log(x)+4+x)+(x-1)*log(x))/(log(x)-x-4)/log(-log(x)+4+x)^2,x, algo
rithm="giac")

[Out]

x*log(x)/log(x - log(x) + 4)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 15, normalized size = 0.94




method result size



risch xln(x)ln(ln(x)+4+x) 15



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((ln(x)^2+(-3-x)*ln(x)-x-4)*ln(-ln(x)+4+x)+(x-1)*ln(x))/(ln(x)-x-4)/ln(-ln(x)+4+x)^2,x,method=_RETURNVERBO
SE)

[Out]

x/ln(-ln(x)+4+x)*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 14, normalized size = 0.88 xlog(x)log(xlog(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(-3-x)*log(x)-x-4)*log(-log(x)+4+x)+(x-1)*log(x))/(log(x)-x-4)/log(-log(x)+4+x)^2,x, algo
rithm="maxima")

[Out]

x*log(x)/log(x - log(x) + 4)

________________________________________________________________________________________

mupad [B]  time = 4.74, size = 82, normalized size = 5.12 x+3ln(x)+5x1ln(x)2(1x1+1)+xln(x)xln(xln(x)+4)(ln(x)+1)(xln(x)+4)x1ln(xln(x)+4)+ln(x)(x2+3)x1

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x)*(x - 1) - log(x - log(x) + 4)*(x + log(x)*(x + 3) - log(x)^2 + 4))/(log(x - log(x) + 4)^2*(x - lo
g(x) + 4)),x)

[Out]

x + 3*log(x) + 5/(x - 1) - log(x)^2*(1/(x - 1) + 1) + (x*log(x) - (x*log(x - log(x) + 4)*(log(x) + 1)*(x - log
(x) + 4))/(x - 1))/log(x - log(x) + 4) + (log(x)*(x^2 + 3))/(x - 1)

________________________________________________________________________________________

sympy [A]  time = 0.35, size = 12, normalized size = 0.75 xlog(x)log(xlog(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((ln(x)**2+(-3-x)*ln(x)-x-4)*ln(-ln(x)+4+x)+(x-1)*ln(x))/(ln(x)-x-4)/ln(-ln(x)+4+x)**2,x)

[Out]

x*log(x)/log(x - log(x) + 4)

________________________________________________________________________________________