3.73.56 225x+ex2(27+4x2)+27log(x)+(ex2x+log(x))log(e2x2+2ex2x+x2+(2ex22x)log(x)+log2(x)x2)ex2x2x3+x2log(x)dx

Optimal. Leaf size=27 525+log((ex2+xlog(x))2x2)x

________________________________________________________________________________________

Rubi [A]  time = 1.97, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 16, number of rules used = 5, integrand size = 103, number of rulesintegrand size = 0.049, Rules used = {6742, 14, 30, 2555, 12} log((ex2+xlog(x))2x2)x25x

Antiderivative was successfully verified.

[In]

Int[(-2 - 25*x + E^x^2*(-27 + 4*x^2) + 27*Log[x] + (-E^x^2 - x + Log[x])*Log[(E^(2*x^2) + 2*E^x^2*x + x^2 + (-
2*E^x^2 - 2*x)*Log[x] + Log[x]^2)/x^2])/(-(E^x^2*x^2) - x^3 + x^2*Log[x]),x]

[Out]

-25/x - Log[(E^x^2 + x - Log[x])^2/x^2]/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2555

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(2(1x+2x32x2log(x))x2(ex2+xlog(x))+274x2+log((ex2+xlog(x))2x2)x2)dx=21x+2x32x2log(x)x2(ex2+xlog(x))dx+274x2+log((ex2+xlog(x))2x2)x2dx=2(1x2(ex2+xlog(x))1x(ex2+xlog(x))+2xex2+xlog(x)2log(x)ex2+xlog(x))dx+(274x2x2+log((ex2+xlog(x))2x2)x2)dx=21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx+274x2x2dx+log((ex2+xlog(x))2x2)x2dx=log((ex2+xlog(x))2x2)x+21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx+(4+27x2)dx2(1+ex2(1+2x2)+log(x))x2(ex2+xlog(x))dx=27x4xlog((ex2+xlog(x))2x2)x+21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx+21+ex2(1+2x2)+log(x)x2(ex2+xlog(x))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx=27x4xlog((ex2+xlog(x))2x2)x+21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx+2(1+2x2x21x+2x32x2log(x)x2(ex2+xlog(x)))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx=27x4xlog((ex2+xlog(x))2x2)x+21+2x2x2dx+21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx21x+2x32x2log(x)x2(ex2+xlog(x))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx=27x4xlog((ex2+xlog(x))2x2)x+2(21x2)dx+21x2(ex2+xlog(x))dx21x(ex2+xlog(x))dx2(1x2(ex2+xlog(x))1x(ex2+xlog(x))+2xex2+xlog(x)2log(x)ex2+xlog(x))dx+4xex2+xlog(x)dx4log(x)ex2+xlog(x)dx=25xlog((ex2+xlog(x))2x2)x

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 29, normalized size = 1.07 25xlog((ex2+xlog(x))2x2)x

Antiderivative was successfully verified.

[In]

Integrate[(-2 - 25*x + E^x^2*(-27 + 4*x^2) + 27*Log[x] + (-E^x^2 - x + Log[x])*Log[(E^(2*x^2) + 2*E^x^2*x + x^
2 + (-2*E^x^2 - 2*x)*Log[x] + Log[x]^2)/x^2])/(-(E^x^2*x^2) - x^3 + x^2*Log[x]),x]

[Out]

-25/x - Log[(E^x^2 + x - Log[x])^2/x^2]/x

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 43, normalized size = 1.59 log(x2+2xe(x2)2(x+e(x2))log(x)+log(x)2+e(2x2)x2)+25x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="fricas")

[Out]

-(log((x^2 + 2*x*e^(x^2) - 2*(x + e^(x^2))*log(x) + log(x)^2 + e^(2*x^2))/x^2) + 25)/x

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 0.16, size = 338, normalized size = 12.52




method result size



risch 2ln(ex2ln(x)+x)x+iπcsgn(ix)2csgn(ix2)+2iπcsgn(ix)csgn(ix2)2iπcsgn(ix2)3+iπcsgn(ix2)csgn(i(ln(x)ex2x)2)csgn(i(ln(x)ex2x)2x2)iπcsgn(ix2)csgn(i(ln(x)ex2x)2x2)2+iπcsgn(i(ln(x)ex2x))2csgn(i(ln(x)ex2x)2)+2iπcsgn(i(ln(x)ex2x))csgn(i(ln(x)ex2x)2)2+iπcsgn(i(ln(x)ex2x)2)3iπcsgn(i(ln(x)ex2x)2)csgn(i(ln(x)ex2x)2x2)2+iπcsgn(i(ln(x)ex2x)2x2)3+4ln(x)502x 338



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((ln(x)-exp(x^2)-x)*ln((ln(x)^2+(-2*exp(x^2)-2*x)*ln(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*ln(x)+(4*x^2-
27)*exp(x^2)-25*x-2)/(x^2*ln(x)-x^2*exp(x^2)-x^3),x,method=_RETURNVERBOSE)

[Out]

-2/x*ln(exp(x^2)-ln(x)+x)+1/2*(-I*Pi*csgn(I*x)^2*csgn(I*x^2)+2*I*Pi*csgn(I*x)*csgn(I*x^2)^2-I*Pi*csgn(I*x^2)^3
+I*Pi*csgn(I/x^2)*csgn(I*(ln(x)-exp(x^2)-x)^2)*csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)-I*Pi*csgn(I/x^2)*csgn(I*(ln(x)
-exp(x^2)-x)^2/x^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x))^2*csgn(I*(ln(x)-exp(x^2)-x)^2)+2*I*Pi*csgn(I*(ln(x)-exp(
x^2)-x))*csgn(I*(ln(x)-exp(x^2)-x)^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2)^3-I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2)*
csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)^3+4*ln(x)-50)/x

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 25, normalized size = 0.93 2log(x)2log(xe(x2)+log(x))25x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="maxima")

[Out]

(2*log(x) - 2*log(-x - e^(x^2) + log(x)) - 25)/x

________________________________________________________________________________________

mupad [B]  time = 4.57, size = 47, normalized size = 1.74 ln(e2x2+2xex2ln(x)(2x+2ex2)+ln(x)2+x2x2)+25x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((25*x - 27*log(x) - exp(x^2)*(4*x^2 - 27) + log((exp(2*x^2) + 2*x*exp(x^2) - log(x)*(2*x + 2*exp(x^2)) + l
og(x)^2 + x^2)/x^2)*(x + exp(x^2) - log(x)) + 2)/(x^2*exp(x^2) - x^2*log(x) + x^3),x)

[Out]

-(log((exp(2*x^2) + 2*x*exp(x^2) - log(x)*(2*x + 2*exp(x^2)) + log(x)^2 + x^2)/x^2) + 25)/x

________________________________________________________________________________________

sympy [B]  time = 1.07, size = 49, normalized size = 1.81 log(x2+2xex2+(2x2ex2)log(x)+e2x2+log(x)2x2)x25x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((ln(x)-exp(x**2)-x)*ln((ln(x)**2+(-2*exp(x**2)-2*x)*ln(x)+exp(x**2)**2+2*exp(x**2)*x+x**2)/x**2)+27
*ln(x)+(4*x**2-27)*exp(x**2)-25*x-2)/(x**2*ln(x)-x**2*exp(x**2)-x**3),x)

[Out]

-log((x**2 + 2*x*exp(x**2) + (-2*x - 2*exp(x**2))*log(x) + exp(2*x**2) + log(x)**2)/x**2)/x - 25/x

________________________________________________________________________________________