3.73.56
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [A] time = 1.97, antiderivative size = 29, normalized size of antiderivative = 1.07,
number of steps used = 16, number of rules used = 5, integrand size = 103, = 0.049, Rules used
= {6742, 14, 30, 2555, 12}
Antiderivative was successfully verified.
[In]
Int[(-2 - 25*x + E^x^2*(-27 + 4*x^2) + 27*Log[x] + (-E^x^2 - x + Log[x])*Log[(E^(2*x^2) + 2*E^x^2*x + x^2 + (-
2*E^x^2 - 2*x)*Log[x] + Log[x]^2)/x^2])/(-(E^x^2*x^2) - x^3 + x^2*Log[x]),x]
[Out]
-25/x - Log[(E^x^2 + x - Log[x])^2/x^2]/x
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2555
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 1.07
Antiderivative was successfully verified.
[In]
Integrate[(-2 - 25*x + E^x^2*(-27 + 4*x^2) + 27*Log[x] + (-E^x^2 - x + Log[x])*Log[(E^(2*x^2) + 2*E^x^2*x + x^
2 + (-2*E^x^2 - 2*x)*Log[x] + Log[x]^2)/x^2])/(-(E^x^2*x^2) - x^3 + x^2*Log[x]),x]
[Out]
-25/x - Log[(E^x^2 + x - Log[x])^2/x^2]/x
________________________________________________________________________________________
fricas [A] time = 0.54, size = 43, normalized size = 1.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="fricas")
[Out]
-(log((x^2 + 2*x*e^(x^2) - 2*(x + e^(x^2))*log(x) + log(x)^2 + e^(2*x^2))/x^2) + 25)/x
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [C] time = 0.16, size = 338, normalized size = 12.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((ln(x)-exp(x^2)-x)*ln((ln(x)^2+(-2*exp(x^2)-2*x)*ln(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*ln(x)+(4*x^2-
27)*exp(x^2)-25*x-2)/(x^2*ln(x)-x^2*exp(x^2)-x^3),x,method=_RETURNVERBOSE)
[Out]
-2/x*ln(exp(x^2)-ln(x)+x)+1/2*(-I*Pi*csgn(I*x)^2*csgn(I*x^2)+2*I*Pi*csgn(I*x)*csgn(I*x^2)^2-I*Pi*csgn(I*x^2)^3
+I*Pi*csgn(I/x^2)*csgn(I*(ln(x)-exp(x^2)-x)^2)*csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)-I*Pi*csgn(I/x^2)*csgn(I*(ln(x)
-exp(x^2)-x)^2/x^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x))^2*csgn(I*(ln(x)-exp(x^2)-x)^2)+2*I*Pi*csgn(I*(ln(x)-exp(
x^2)-x))*csgn(I*(ln(x)-exp(x^2)-x)^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2)^3-I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2)*
csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)^2+I*Pi*csgn(I*(ln(x)-exp(x^2)-x)^2/x^2)^3+4*ln(x)-50)/x
________________________________________________________________________________________
maxima [A] time = 0.39, size = 25, normalized size = 0.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)-exp(x^2)-x)*log((log(x)^2+(-2*exp(x^2)-2*x)*log(x)+exp(x^2)^2+2*exp(x^2)*x+x^2)/x^2)+27*log
(x)+(4*x^2-27)*exp(x^2)-25*x-2)/(x^2*log(x)-x^2*exp(x^2)-x^3),x, algorithm="maxima")
[Out]
(2*log(x) - 2*log(-x - e^(x^2) + log(x)) - 25)/x
________________________________________________________________________________________
mupad [B] time = 4.57, size = 47, normalized size = 1.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((25*x - 27*log(x) - exp(x^2)*(4*x^2 - 27) + log((exp(2*x^2) + 2*x*exp(x^2) - log(x)*(2*x + 2*exp(x^2)) + l
og(x)^2 + x^2)/x^2)*(x + exp(x^2) - log(x)) + 2)/(x^2*exp(x^2) - x^2*log(x) + x^3),x)
[Out]
-(log((exp(2*x^2) + 2*x*exp(x^2) - log(x)*(2*x + 2*exp(x^2)) + log(x)^2 + x^2)/x^2) + 25)/x
________________________________________________________________________________________
sympy [B] time = 1.07, size = 49, normalized size = 1.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((ln(x)-exp(x**2)-x)*ln((ln(x)**2+(-2*exp(x**2)-2*x)*ln(x)+exp(x**2)**2+2*exp(x**2)*x+x**2)/x**2)+27
*ln(x)+(4*x**2-27)*exp(x**2)-25*x-2)/(x**2*ln(x)-x**2*exp(x**2)-x**3),x)
[Out]
-log((x**2 + 2*x*exp(x**2) + (-2*x - 2*exp(x**2))*log(x) + exp(2*x**2) + log(x)**2)/x**2)/x - 25/x
________________________________________________________________________________________