Optimal. Leaf size=25 \[ e^{e^{\frac {x}{-\frac {17}{4}+e^4+x}}}-\frac {e^x}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right ) \left (-68 x^2+16 e^4 x^2\right )+e^x \left (289+e^8 (16-16 x)-425 x+152 x^2-16 x^3+e^4 \left (-136+168 x-32 x^2\right )\right )}{289 x^2+16 e^8 x^2-136 x^3+16 x^4+e^4 \left (-136 x^2+32 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right ) \left (-68 x^2+16 e^4 x^2\right )+e^x \left (289+e^8 (16-16 x)-425 x+152 x^2-16 x^3+e^4 \left (-136+168 x-32 x^2\right )\right )}{\left (289+16 e^8\right ) x^2-136 x^3+16 x^4+e^4 \left (-136 x^2+32 x^3\right )} \, dx\\ &=\int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right ) \left (-68 x^2+16 e^4 x^2\right )+e^x \left (289+e^8 (16-16 x)-425 x+152 x^2-16 x^3+e^4 \left (-136+168 x-32 x^2\right )\right )}{x^2 \left (\left (17-4 e^4\right )^2+8 \left (-17+4 e^4\right ) x+16 x^2\right )} \, dx\\ &=\int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right ) \left (-68 x^2+16 e^4 x^2\right )+e^x \left (289+e^8 (16-16 x)-425 x+152 x^2-16 x^3+e^4 \left (-136+168 x-32 x^2\right )\right )}{x^2 \left (-17+4 e^4+4 x\right )^2} \, dx\\ &=\int \left (-\frac {e^x (-1+x)}{x^2}+\frac {4 \exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right ) \left (-17+4 e^4\right )}{\left (-17+4 e^4+4 x\right )^2}\right ) \, dx\\ &=-\left (\left (4 \left (17-4 e^4\right )\right ) \int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right )}{\left (-17+4 e^4+4 x\right )^2} \, dx\right )-\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=-\frac {e^x}{x}-\left (4 \left (17-4 e^4\right )\right ) \int \frac {\exp \left (e^{\frac {4 x}{-17+4 e^4+4 x}}+\frac {4 x}{-17+4 e^4+4 x}\right )}{\left (-17+4 e^4+4 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 1.12 \begin {gather*} e^{e^{\frac {4 x}{-17+4 e^4+4 x}}}-\frac {e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.91, size = 83, normalized size = 3.32 \begin {gather*} \frac {{\left (x e^{\left (\frac {{\left (4 \, x + 4 \, e^{4} - 17\right )} e^{\left (\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )} + 4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )} - e^{\left (x + \frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )}\right )} e^{\left (-\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.92, size = 112, normalized size = 4.48 \begin {gather*} \frac {{\left (x e^{\left (\frac {4 \, x e^{\left (\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )} + 4 \, x - 17 \, e^{\left (\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )} + 4 \, e^{\left (\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17} + 4\right )}}{4 \, x + 4 \, e^{4} - 17}\right )} - e^{\left (x + \frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )}\right )} e^{\left (-\frac {4 \, x}{4 \, x + 4 \, e^{4} - 17}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 25, normalized size = 1.00
method | result | size |
risch | \(-\frac {{\mathrm e}^{x}}{x}+{\mathrm e}^{{\mathrm e}^{\frac {4 x}{4 \,{\mathrm e}^{4}+4 x -17}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 43, normalized size = 1.72 \begin {gather*} \frac {x e^{\left (e^{\left (-\frac {4 \, e^{4}}{4 \, x + 4 \, e^{4} - 17} + \frac {17}{4 \, x + 4 \, e^{4} - 17} + 1\right )}\right )} - e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.05, size = 24, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {4\,x}{4\,x+4\,{\mathrm {e}}^4-17}}}-\frac {{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.87, size = 20, normalized size = 0.80 \begin {gather*} e^{e^{\frac {4 x}{4 x - 17 + 4 e^{4}}}} - \frac {e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________