3.73.70 30x4+2x6+e1+x2x2(30+2x2)+(2e1+x2x2x4+2x6)log(5e1+x2x2+5x2)e1+x2x2x3+x5dx

Optimal. Leaf size=22 (15+x2)log(5(e11x2+x2))

________________________________________________________________________________________

Rubi [F]  time = 1.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 30x4+2x6+e1+x2x2(30+2x2)+(2e1+x2x2x4+2x6)log(5e1+x2x2+5x2)e1+x2x2x3+x5dx

Verification is not applicable to the result.

[In]

Int[(30*x^4 + 2*x^6 + E^((-1 + x^2)/x^2)*(30 + 2*x^2) + (2*E^((-1 + x^2)/x^2)*x^4 + 2*x^6)*Log[5*E^((-1 + x^2)
/x^2) + 5*x^2])/(E^((-1 + x^2)/x^2)*x^3 + x^5),x]

[Out]

30*Log[x] + x^2*Log[5*(E^(1 - x^(-2)) + x^2)] + 15*E*Defer[Subst][Defer[Int][1/(x^2*(E + E^x^(-1)*x)), x], x,
x^2] - 15*E*Defer[Subst][Defer[Int][1/(x*(E + E^x^(-1)*x)), x], x, x^2]

Rubi steps

integral=(2(15+x2)(e+e1x2x4)x3(e+e1x2x2)+2xlog(5(e11x2+x2)))dx=2(15+x2)(e+e1x2x4)x3(e+e1x2x2)dx+2xlog(5(e11x2+x2))dx=x2log(5(e11x2+x2))2(e+e1x2x4)ex+e1x2x3dx+Subst((15+x)(e+e1xx2)x2(e+e1xx)dx,x,x2)=x2log(5(e11x2+x2))2e+e1x2x4ex+e1x2x3dx+Subst((15+xxe(1+x)(15+x)x2(e+e1xx))dx,x,x2)=x2log(5(e11x2+x2))2(xe(1+x2)x(e+e1x2x2))dxeSubst((1+x)(15+x)x2(e+e1xx)dx,x,x2)+Subst(15+xxdx,x,x2)=x2+x2log(5(e11x2+x2))eSubst((1e+e1xx15x2(e+e1xx)+14x(e+e1xx))dx,x,x2)+(2e)1+x2x(e+e1x2x2)dx+Subst((1+15x)dx,x,x2)=30log(x)+x2log(5(e11x2+x2))eSubst(1e+e1xxdx,x,x2)+eSubst(1+xx(e+e1xx)dx,x,x2)(14e)Subst(1x(e+e1xx)dx,x,x2)+(15e)Subst(1x2(e+e1xx)dx,x,x2)=30log(x)+x2log(5(e11x2+x2))eSubst(1e+e1xxdx,x,x2)+eSubst((1e+e1xx1x(e+e1xx))dx,x,x2)(14e)Subst(1x(e+e1xx)dx,x,x2)+(15e)Subst(1x2(e+e1xx)dx,x,x2)=30log(x)+x2log(5(e11x2+x2))eSubst(1x(e+e1xx)dx,x,x2)(14e)Subst(1x(e+e1xx)dx,x,x2)+(15e)Subst(1x2(e+e1xx)dx,x,x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 41, normalized size = 1.86 115x2+x2log(5(e11x2+x2))+15log(e+e1x2x2)

Antiderivative was successfully verified.

[In]

Integrate[(30*x^4 + 2*x^6 + E^((-1 + x^2)/x^2)*(30 + 2*x^2) + (2*E^((-1 + x^2)/x^2)*x^4 + 2*x^6)*Log[5*E^((-1
+ x^2)/x^2) + 5*x^2])/(E^((-1 + x^2)/x^2)*x^3 + x^5),x]

[Out]

1 - 15/x^2 + x^2*Log[5*(E^(1 - x^(-2)) + x^2)] + 15*Log[E + E^x^(-2)*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 25, normalized size = 1.14 (x2+15)log(5x2+5e(x21x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^4*exp((x^2-1)/x^2)+2*x^6)*log(5*exp((x^2-1)/x^2)+5*x^2)+(2*x^2+30)*exp((x^2-1)/x^2)+2*x^6+30*x
^4)/(x^3*exp((x^2-1)/x^2)+x^5),x, algorithm="fricas")

[Out]

(x^2 + 15)*log(5*x^2 + 5*e^((x^2 - 1)/x^2))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 41, normalized size = 1.86 x2log(5x2+5e(x21x2))+15log(x2+e(x21x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^4*exp((x^2-1)/x^2)+2*x^6)*log(5*exp((x^2-1)/x^2)+5*x^2)+(2*x^2+30)*exp((x^2-1)/x^2)+2*x^6+30*x
^4)/(x^3*exp((x^2-1)/x^2)+x^5),x, algorithm="giac")

[Out]

x^2*log(5*x^2 + 5*e^((x^2 - 1)/x^2)) + 15*log(x^2 + e^((x^2 - 1)/x^2))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 45, normalized size = 2.05




method result size



risch x2ln(5e(x1)(x+1)x2+5x2)+15ln(e(x1)(x+1)x2+x2)15 45



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^4*exp((x^2-1)/x^2)+2*x^6)*ln(5*exp((x^2-1)/x^2)+5*x^2)+(2*x^2+30)*exp((x^2-1)/x^2)+2*x^6+30*x^4)/(x^
3*exp((x^2-1)/x^2)+x^5),x,method=_RETURNVERBOSE)

[Out]

x^2*ln(5*exp((x-1)*(x+1)/x^2)+5*x^2)+15*ln(exp((x-1)*(x+1)/x^2)+x^2)-15

________________________________________________________________________________________

maxima [B]  time = 0.48, size = 51, normalized size = 2.32 x4log(5)+x4log(x2e(1x2)+e)15x2+30log(x)+15log(x2e(1x2)+ex2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^4*exp((x^2-1)/x^2)+2*x^6)*log(5*exp((x^2-1)/x^2)+5*x^2)+(2*x^2+30)*exp((x^2-1)/x^2)+2*x^6+30*x
^4)/(x^3*exp((x^2-1)/x^2)+x^5),x, algorithm="maxima")

[Out]

(x^4*log(5) + x^4*log(x^2*e^(x^(-2)) + e) - 15)/x^2 + 30*log(x) + 15*log((x^2*e^(x^(-2)) + e)/x^2)

________________________________________________________________________________________

mupad [B]  time = 4.46, size = 38, normalized size = 1.73 15ln(ee1x2+x2)+x2ln(5ee1x2+5x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(5*exp((x^2 - 1)/x^2) + 5*x^2)*(2*x^4*exp((x^2 - 1)/x^2) + 2*x^6) + exp((x^2 - 1)/x^2)*(2*x^2 + 30) +
30*x^4 + 2*x^6)/(x^3*exp((x^2 - 1)/x^2) + x^5),x)

[Out]

15*log(exp(1)*exp(-1/x^2) + x^2) + x^2*log(5*exp(1)*exp(-1/x^2) + 5*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.50, size = 37, normalized size = 1.68 x2log(5x2+5ex21x2)+15log(x2+ex21x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**4*exp((x**2-1)/x**2)+2*x**6)*ln(5*exp((x**2-1)/x**2)+5*x**2)+(2*x**2+30)*exp((x**2-1)/x**2)+2
*x**6+30*x**4)/(x**3*exp((x**2-1)/x**2)+x**5),x)

[Out]

x**2*log(5*x**2 + 5*exp((x**2 - 1)/x**2)) + 15*log(x**2 + exp((x**2 - 1)/x**2))

________________________________________________________________________________________