3.73.80 13572x+90x212x3x4+4x6+e2e2(153x2)+e2x(156x3x2+2x3)+ex(90+42x24x2+2x3+6x44x5)+ee2(90+24x18x24x3+4x4+ex(306x6x2+2x3))x6dx

Optimal. Leaf size=34 (23ee2exxx2)2(3x+x)

________________________________________________________________________________________

Rubi [C]  time = 0.93, antiderivative size = 406, normalized size of antiderivative = 11.94, number of steps used = 47, number of rules used = 4, integrand size = 139, number of rulesintegrand size = 0.029, Rules used = {14, 2199, 2177, 2178} (4+ee2)Ei(x)+(1+ee2)Ei(x)+14(7ee2)Ei(x)14(3ee2)Ei(x)+2Ei(x)3e2xx53(3ee2)2x5+6(3ee2)exx53(7ee2)ex2x4+3(3ee2)ex2x4+6(3ee2)x4+e2xx3306ee2e2e2x3+2(4+ee2)exx3(7ee2)ex2x3+(3ee2)ex2x3+(4+ee2)exx2+2(3+ee2)x2(1+ee2)exx2(7ee2)ex4x2+(3ee2)ex4x2+4x6exx+(4+ee2)exx(1+ee2)exx(7ee2)ex4x+(3ee2)ex4x+14ee2x

Antiderivative was successfully verified.

[In]

Int[(135 - 72*x + 90*x^2 - 12*x^3 - x^4 + 4*x^6 + E^(2*E^2)*(15 - 3*x^2) + E^(2*x)*(15 - 6*x - 3*x^2 + 2*x^3)
+ E^x*(-90 + 42*x - 24*x^2 + 2*x^3 + 6*x^4 - 4*x^5) + E^E^2*(-90 + 24*x - 18*x^2 - 4*x^3 + 4*x^4 + E^x*(30 - 6
*x - 6*x^2 + 2*x^3)))/x^6,x]

[Out]

(-3*E^(2*x))/x^5 + (6*E^x*(3 - E^E^2))/x^5 - (3*(3 - E^E^2)^2)/x^5 + (6*(3 - E^E^2))/x^4 + (3*E^x*(3 - E^E^2))
/(2*x^4) - (3*E^x*(7 - E^E^2))/(2*x^4) + E^(2*x)/x^3 + (E^x*(3 - E^E^2))/(2*x^3) - (E^x*(7 - E^E^2))/(2*x^3) +
 (2*E^x*(4 + E^E^2))/x^3 - (30 - 6*E^E^2 - E^(2*E^2))/x^3 + (E^x*(3 - E^E^2))/(4*x^2) - (E^x*(7 - E^E^2))/(4*x
^2) - (E^x*(1 + E^E^2))/x^2 + (2*(3 + E^E^2))/x^2 + (E^x*(4 + E^E^2))/x^2 - (6*E^x)/x + (1 - 4*E^E^2)/x + (E^x
*(3 - E^E^2))/(4*x) - (E^x*(7 - E^E^2))/(4*x) - (E^x*(1 + E^E^2))/x + (E^x*(4 + E^E^2))/x + 4*x + 2*ExpIntegra
lEi[x] - ((3 - E^E^2)*ExpIntegralEi[x])/4 + ((7 - E^E^2)*ExpIntegralEi[x])/4 + (1 + E^E^2)*ExpIntegralEi[x] -
(4 + E^E^2)*ExpIntegralEi[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rubi steps

integral=(e2x(156x3x2+2x3)x6+2ex(45(1ee23)+21(1ee27)x12(1+ee24)x2+(1+ee2)x3+3x42x5)x6+135(1+19ee2(6+ee2))72(1ee23)x+90(1130ee2(6+ee2))x212(1+ee23)x3(14ee2)x4+4x6x6)dx=2ex(45(1ee23)+21(1ee27)x12(1+ee24)x2+(1+ee2)x3+3x42x5)x6dx+e2x(156x3x2+2x3)x6dx+135(1+19ee2(6+ee2))72(1ee23)x+90(1130ee2(6+ee2))x212(1+ee23)x3(14ee2)x4+4x6x6dx=2(15ex(3+ee2)x63ex(7+ee2)x53ex(4+ee2)x4+ex(1+ee2)x3+3exx22exx)dx+(15e2xx66e2xx53e2xx4+2e2xx3)dx+(4+15(3+ee2)2x6+24(3+ee2)x53(30+6ee2+e2e2)x44(3+ee2)x3+1+4ee2x2)dx=3(3ee2)2x5+6(3ee2)x4306ee2e2e2x3+2(3+ee2)x2+14ee2x+4x+2e2xx3dx3e2xx4dx4exxdx6e2xx5dx+6exx2dx+15e2xx6dx(30(3ee2))exx6dx+(6(7ee2))exx5dx+(2(1+ee2))exx3dx(6(4+ee2))exx4dx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+3e2x2x4+6(3ee2)x43ex(7ee2)2x4+e2xx3+2ex(4+ee2)x3306ee2e2e2x3e2xx2ex(1+ee2)x2+2(3+ee2)x26exx+14ee2x+4x4Ei(x)2e2xx3dx+2e2xx2dx3e2xx4dx+6e2xx5dx+6exxdx(6(3ee2))exx5dx+12(3(7ee2))exx4dx+(1+ee2)exx2dx(2(4+ee2))exx3dx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+6(3ee2)x4+3ex(3ee2)2x43ex(7ee2)2x4+2e2xx3ex(7ee2)2x3+2ex(4+ee2)x3306ee2e2e2x3ex(1+ee2)x2+2(3+ee2)x2+ex(4+ee2)x26exx2e2xx+14ee2xex(1+ee2)x+4x+2Ei(x)2e2xx3dx2e2xx2dx+3e2xx4dx+4e2xxdx12(3(3ee2))exx4dx+12(7ee2)exx3dx+(1+ee2)exxdx(4+ee2)exx2dx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+6(3ee2)x4+3ex(3ee2)2x43ex(7ee2)2x4+e2xx3+ex(3ee2)2x3ex(7ee2)2x3+2ex(4+ee2)x3306ee2e2e2x3+e2xx2ex(7ee2)4x2ex(1+ee2)x2+2(3+ee2)x2+ex(4+ee2)x26exx+14ee2xex(1+ee2)x+ex(4+ee2)x+4x+2Ei(x)+(1+ee2)Ei(x)+4Ei(2x)+2e2xx3dx2e2xx2dx4e2xxdx12(3ee2)exx3dx+14(7ee2)exx2dx(4+ee2)exxdx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+6(3ee2)x4+3ex(3ee2)2x43ex(7ee2)2x4+e2xx3+ex(3ee2)2x3ex(7ee2)2x3+2ex(4+ee2)x3306ee2e2e2x3+ex(3ee2)4x2ex(7ee2)4x2ex(1+ee2)x2+2(3+ee2)x2+ex(4+ee2)x26exx+2e2xx+14ee2xex(7ee2)4xex(1+ee2)x+ex(4+ee2)x+4x+2Ei(x)+(1+ee2)Ei(x)(4+ee2)Ei(x)+2e2xx2dx4e2xxdx14(3ee2)exx2dx+14(7ee2)exxdx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+6(3ee2)x4+3ex(3ee2)2x43ex(7ee2)2x4+e2xx3+ex(3ee2)2x3ex(7ee2)2x3+2ex(4+ee2)x3306ee2e2e2x3+ex(3ee2)4x2ex(7ee2)4x2ex(1+ee2)x2+2(3+ee2)x2+ex(4+ee2)x26exx+14ee2x+ex(3ee2)4xex(7ee2)4xex(1+ee2)x+ex(4+ee2)x+4x+2Ei(x)+14(7ee2)Ei(x)+(1+ee2)Ei(x)(4+ee2)Ei(x)4Ei(2x)+4e2xxdx14(3ee2)exxdx=3e2xx5+6ex(3ee2)x53(3ee2)2x5+6(3ee2)x4+3ex(3ee2)2x43ex(7ee2)2x4+e2xx3+ex(3ee2)2x3ex(7ee2)2x3+2ex(4+ee2)x3306ee2e2e2x3+ex(3ee2)4x2ex(7ee2)4x2ex(1+ee2)x2+2(3+ee2)x2+ex(4+ee2)x26exx+14ee2x+ex(3ee2)4xex(7ee2)4xex(1+ee2)x+ex(4+ee2)x+4x+2Ei(x)14(3ee2)Ei(x)+14(7ee2)Ei(x)+(1+ee2)Ei(x)(4+ee2)Ei(x)

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 113, normalized size = 3.32 27+18x30x2+6x3+x4+4x6+e2e2(3+x2)+e2x(3+x2)+2ee2+x(3+x2)+2ee2(93x+3x2+x32x4)+2ex(93x+3x2+x32x4)x5

Antiderivative was successfully verified.

[In]

Integrate[(135 - 72*x + 90*x^2 - 12*x^3 - x^4 + 4*x^6 + E^(2*E^2)*(15 - 3*x^2) + E^(2*x)*(15 - 6*x - 3*x^2 + 2
*x^3) + E^x*(-90 + 42*x - 24*x^2 + 2*x^3 + 6*x^4 - 4*x^5) + E^E^2*(-90 + 24*x - 18*x^2 - 4*x^3 + 4*x^4 + E^x*(
30 - 6*x - 6*x^2 + 2*x^3)))/x^6,x]

[Out]

(-27 + 18*x - 30*x^2 + 6*x^3 + x^4 + 4*x^6 + E^(2*E^2)*(-3 + x^2) + E^(2*x)*(-3 + x^2) + 2*E^(E^2 + x)*(-3 + x
^2) + 2*E^E^2*(9 - 3*x + 3*x^2 + x^3 - 2*x^4) + 2*E^x*(9 - 3*x + 3*x^2 + x^3 - 2*x^4))/x^5

________________________________________________________________________________________

fricas [B]  time = 0.74, size = 106, normalized size = 3.12 4x6+x4+6x330x2+(x23)e(2x)2(2x4x33x2+3x9)ex+(x23)e(2e2)2(2x4x33x2(x23)ex+3x9)e(e2)+18x27x5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="fricas")

[Out]

(4*x^6 + x^4 + 6*x^3 - 30*x^2 + (x^2 - 3)*e^(2*x) - 2*(2*x^4 - x^3 - 3*x^2 + 3*x - 9)*e^x + (x^2 - 3)*e^(2*e^2
) - 2*(2*x^4 - x^3 - 3*x^2 - (x^2 - 3)*e^x + 3*x - 9)*e^(e^2) + 18*x - 27)/x^5

________________________________________________________________________________________

giac [B]  time = 0.22, size = 139, normalized size = 4.09 4x64x4ex4x4e(e2)+x4+2x3ex+2x3e(e2)+6x3+x2e(2x)+2x2e(x+e2)+6x2ex+x2e(2e2)+6x2e(e2)30x26xex6xe(e2)+18x3e(2x)6e(x+e2)+18ex3e(2e2)+18e(e2)27x5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="giac")

[Out]

(4*x^6 - 4*x^4*e^x - 4*x^4*e^(e^2) + x^4 + 2*x^3*e^x + 2*x^3*e^(e^2) + 6*x^3 + x^2*e^(2*x) + 2*x^2*e^(x + e^2)
 + 6*x^2*e^x + x^2*e^(2*e^2) + 6*x^2*e^(e^2) - 30*x^2 - 6*x*e^x - 6*x*e^(e^2) + 18*x - 3*e^(2*x) - 6*e^(x + e^
2) + 18*e^x - 3*e^(2*e^2) + 18*e^(e^2) - 27)/x^5

________________________________________________________________________________________

maple [B]  time = 0.07, size = 120, normalized size = 3.53




method result size



risch 4x+(4ee2+1)x4+(6+2ee2)x3+(e2e2+6ee230)x2+(186ee2)x3e2e2+18ee227x5+(x23)e2xx5+2(2x4+x2ee2+x3+3x23ee23x+9)exx5 120
norman (6+2ee2)x3+(186ee2)x+(186ee2)ex+(4ee2+1)x4+(e2e2+6ee230)x2+e2xx2+(6+2ee2)x2ex+4x63e2x6exx+2exx34exx43e2e2+18ee227x5 127
default 4x27x5+18x430x3+6x2+1x+18exx56exx4+6exx3+2exx24exx+18ee2x53e2e2x56ee2x4+6ee2x3+2ee2x23e2xx5+e2xx34ee2x+e2e2x3+30ee2(ex5x5ex20x4ex60x3ex120x2ex120x\expIntegralEi(1,x)120)6ee2(ex4x4ex12x3ex24x2ex24x\expIntegralEi(1,x)24)6ee2(ex3x3ex6x2ex6x\expIntegralEi(1,x)6)+2ee2(ex2x2ex2x\expIntegralEi(1,x)2) 289



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x^3-3*x
^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,method=
_RETURNVERBOSE)

[Out]

4*x+((-4*exp(exp(2))+1)*x^4+(6+2*exp(exp(2)))*x^3+(exp(2*exp(2))+6*exp(exp(2))-30)*x^2+(18-6*exp(exp(2)))*x-3*
exp(2*exp(2))+18*exp(exp(2))-27)/x^5+(x^2-3)/x^5*exp(2*x)+2*(-2*x^4+x^2*exp(exp(2))+x^3+3*x^2-3*exp(exp(2))-3*
x+9)/x^5*exp(x)

________________________________________________________________________________________

maxima [C]  time = 0.43, size = 193, normalized size = 5.68 2e(e2)Γ(2,x)6e(e2)Γ(3,x)+6e(e2)Γ(4,x)+30e(e2)Γ(5,x)+4x4e(e2)x+1x+2e(e2)x2+6x2+e(2e2)x3+6e(e2)x330x36e(e2)x4+18x43e(2e2)x5+18e(e2)x527x54Ei(x)+6Γ(1,x)2Γ(2,x)8Γ(2,2x)24Γ(3,x)24Γ(3,2x)42Γ(4,x)+96Γ(4,2x)90Γ(5,x)+480Γ(5,2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="maxima")

[Out]

-2*e^(e^2)*gamma(-2, -x) - 6*e^(e^2)*gamma(-3, -x) + 6*e^(e^2)*gamma(-4, -x) + 30*e^(e^2)*gamma(-5, -x) + 4*x
- 4*e^(e^2)/x + 1/x + 2*e^(e^2)/x^2 + 6/x^2 + e^(2*e^2)/x^3 + 6*e^(e^2)/x^3 - 30/x^3 - 6*e^(e^2)/x^4 + 18/x^4
- 3*e^(2*e^2)/x^5 + 18*e^(e^2)/x^5 - 27/x^5 - 4*Ei(x) + 6*gamma(-1, -x) - 2*gamma(-2, -x) - 8*gamma(-2, -2*x)
- 24*gamma(-3, -x) - 24*gamma(-3, -2*x) - 42*gamma(-4, -x) + 96*gamma(-4, -2*x) - 90*gamma(-5, -x) + 480*gamma
(-5, -2*x)

________________________________________________________________________________________

mupad [B]  time = 4.37, size = 96, normalized size = 2.82 4x+e2e2+e2x+2ex+e2+6ee2+6ex30x33(ee2+ex3)2x54ee2+4ex1x+2ee2+2ex+6x26ee2+6ex18x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(72*x + exp(2*exp(2))*(3*x^2 - 15) + exp(2*x)*(6*x + 3*x^2 - 2*x^3 - 15) - exp(x)*(42*x - 24*x^2 + 2*x^3
+ 6*x^4 - 4*x^5 - 90) - 90*x^2 + 12*x^3 + x^4 - 4*x^6 + exp(exp(2))*(18*x^2 - 24*x + 4*x^3 - 4*x^4 + exp(x)*(6
*x + 6*x^2 - 2*x^3 - 30) + 90) - 135)/x^6,x)

[Out]

4*x + (exp(2*exp(2)) + exp(2*x) + 2*exp(x + exp(2)) + 6*exp(exp(2)) + 6*exp(x) - 30)/x^3 - (3*(exp(exp(2)) + e
xp(x) - 3)^2)/x^5 - (4*exp(exp(2)) + 4*exp(x) - 1)/x + (2*exp(exp(2)) + 2*exp(x) + 6)/x^2 - (6*exp(exp(2)) + 6
*exp(x) - 18)/x^4

________________________________________________________________________________________

sympy [B]  time = 2.48, size = 141, normalized size = 4.15 4x+x4(14ee2)+x3(6+2ee2)+x2(30+6ee2+e2e2)+x(186ee2)3e2e227+18ee2x5+(x73x5)e2x+(4x9+2x8+6x7+2x7ee26x66x5ee2+18x5)exx10

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x**2+15)*exp(exp(2))**2+((2*x**3-6*x**2-6*x+30)*exp(x)+4*x**4-4*x**3-18*x**2+24*x-90)*exp(exp(2
))+(2*x**3-3*x**2-6*x+15)*exp(x)**2+(-4*x**5+6*x**4+2*x**3-24*x**2+42*x-90)*exp(x)+4*x**6-x**4-12*x**3+90*x**2
-72*x+135)/x**6,x)

[Out]

4*x + (x**4*(1 - 4*exp(exp(2))) + x**3*(6 + 2*exp(exp(2))) + x**2*(-30 + 6*exp(exp(2)) + exp(2*exp(2))) + x*(1
8 - 6*exp(exp(2))) - 3*exp(2*exp(2)) - 27 + 18*exp(exp(2)))/x**5 + ((x**7 - 3*x**5)*exp(2*x) + (-4*x**9 + 2*x*
*8 + 6*x**7 + 2*x**7*exp(exp(2)) - 6*x**6 - 6*x**5*exp(exp(2)) + 18*x**5)*exp(x))/x**10

________________________________________________________________________________________