3.73.80
Optimal. Leaf size=34
________________________________________________________________________________________
Rubi [C] time = 0.93, antiderivative size = 406, normalized size of antiderivative = 11.94,
number of steps used = 47, number of rules used = 4, integrand size = 139, = 0.029, Rules used
= {14, 2199, 2177, 2178}
Antiderivative was successfully verified.
[In]
Int[(135 - 72*x + 90*x^2 - 12*x^3 - x^4 + 4*x^6 + E^(2*E^2)*(15 - 3*x^2) + E^(2*x)*(15 - 6*x - 3*x^2 + 2*x^3)
+ E^x*(-90 + 42*x - 24*x^2 + 2*x^3 + 6*x^4 - 4*x^5) + E^E^2*(-90 + 24*x - 18*x^2 - 4*x^3 + 4*x^4 + E^x*(30 - 6
*x - 6*x^2 + 2*x^3)))/x^6,x]
[Out]
(-3*E^(2*x))/x^5 + (6*E^x*(3 - E^E^2))/x^5 - (3*(3 - E^E^2)^2)/x^5 + (6*(3 - E^E^2))/x^4 + (3*E^x*(3 - E^E^2))
/(2*x^4) - (3*E^x*(7 - E^E^2))/(2*x^4) + E^(2*x)/x^3 + (E^x*(3 - E^E^2))/(2*x^3) - (E^x*(7 - E^E^2))/(2*x^3) +
(2*E^x*(4 + E^E^2))/x^3 - (30 - 6*E^E^2 - E^(2*E^2))/x^3 + (E^x*(3 - E^E^2))/(4*x^2) - (E^x*(7 - E^E^2))/(4*x
^2) - (E^x*(1 + E^E^2))/x^2 + (2*(3 + E^E^2))/x^2 + (E^x*(4 + E^E^2))/x^2 - (6*E^x)/x + (1 - 4*E^E^2)/x + (E^x
*(3 - E^E^2))/(4*x) - (E^x*(7 - E^E^2))/(4*x) - (E^x*(1 + E^E^2))/x + (E^x*(4 + E^E^2))/x + 4*x + 2*ExpIntegra
lEi[x] - ((3 - E^E^2)*ExpIntegralEi[x])/4 + ((7 - E^E^2)*ExpIntegralEi[x])/4 + (1 + E^E^2)*ExpIntegralEi[x] -
(4 + E^E^2)*ExpIntegralEi[x]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 113, normalized size = 3.32
Antiderivative was successfully verified.
[In]
Integrate[(135 - 72*x + 90*x^2 - 12*x^3 - x^4 + 4*x^6 + E^(2*E^2)*(15 - 3*x^2) + E^(2*x)*(15 - 6*x - 3*x^2 + 2
*x^3) + E^x*(-90 + 42*x - 24*x^2 + 2*x^3 + 6*x^4 - 4*x^5) + E^E^2*(-90 + 24*x - 18*x^2 - 4*x^3 + 4*x^4 + E^x*(
30 - 6*x - 6*x^2 + 2*x^3)))/x^6,x]
[Out]
(-27 + 18*x - 30*x^2 + 6*x^3 + x^4 + 4*x^6 + E^(2*E^2)*(-3 + x^2) + E^(2*x)*(-3 + x^2) + 2*E^(E^2 + x)*(-3 + x
^2) + 2*E^E^2*(9 - 3*x + 3*x^2 + x^3 - 2*x^4) + 2*E^x*(9 - 3*x + 3*x^2 + x^3 - 2*x^4))/x^5
________________________________________________________________________________________
fricas [B] time = 0.74, size = 106, normalized size = 3.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="fricas")
[Out]
(4*x^6 + x^4 + 6*x^3 - 30*x^2 + (x^2 - 3)*e^(2*x) - 2*(2*x^4 - x^3 - 3*x^2 + 3*x - 9)*e^x + (x^2 - 3)*e^(2*e^2
) - 2*(2*x^4 - x^3 - 3*x^2 - (x^2 - 3)*e^x + 3*x - 9)*e^(e^2) + 18*x - 27)/x^5
________________________________________________________________________________________
giac [B] time = 0.22, size = 139, normalized size = 4.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="giac")
[Out]
(4*x^6 - 4*x^4*e^x - 4*x^4*e^(e^2) + x^4 + 2*x^3*e^x + 2*x^3*e^(e^2) + 6*x^3 + x^2*e^(2*x) + 2*x^2*e^(x + e^2)
+ 6*x^2*e^x + x^2*e^(2*e^2) + 6*x^2*e^(e^2) - 30*x^2 - 6*x*e^x - 6*x*e^(e^2) + 18*x - 3*e^(2*x) - 6*e^(x + e^
2) + 18*e^x - 3*e^(2*e^2) + 18*e^(e^2) - 27)/x^5
________________________________________________________________________________________
maple [B] time = 0.07, size = 120, normalized size = 3.53
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x^3-3*x
^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,method=
_RETURNVERBOSE)
[Out]
4*x+((-4*exp(exp(2))+1)*x^4+(6+2*exp(exp(2)))*x^3+(exp(2*exp(2))+6*exp(exp(2))-30)*x^2+(18-6*exp(exp(2)))*x-3*
exp(2*exp(2))+18*exp(exp(2))-27)/x^5+(x^2-3)/x^5*exp(2*x)+2*(-2*x^4+x^2*exp(exp(2))+x^3+3*x^2-3*exp(exp(2))-3*
x+9)/x^5*exp(x)
________________________________________________________________________________________
maxima [C] time = 0.43, size = 193, normalized size = 5.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2+15)*exp(exp(2))^2+((2*x^3-6*x^2-6*x+30)*exp(x)+4*x^4-4*x^3-18*x^2+24*x-90)*exp(exp(2))+(2*x
^3-3*x^2-6*x+15)*exp(x)^2+(-4*x^5+6*x^4+2*x^3-24*x^2+42*x-90)*exp(x)+4*x^6-x^4-12*x^3+90*x^2-72*x+135)/x^6,x,
algorithm="maxima")
[Out]
-2*e^(e^2)*gamma(-2, -x) - 6*e^(e^2)*gamma(-3, -x) + 6*e^(e^2)*gamma(-4, -x) + 30*e^(e^2)*gamma(-5, -x) + 4*x
- 4*e^(e^2)/x + 1/x + 2*e^(e^2)/x^2 + 6/x^2 + e^(2*e^2)/x^3 + 6*e^(e^2)/x^3 - 30/x^3 - 6*e^(e^2)/x^4 + 18/x^4
- 3*e^(2*e^2)/x^5 + 18*e^(e^2)/x^5 - 27/x^5 - 4*Ei(x) + 6*gamma(-1, -x) - 2*gamma(-2, -x) - 8*gamma(-2, -2*x)
- 24*gamma(-3, -x) - 24*gamma(-3, -2*x) - 42*gamma(-4, -x) + 96*gamma(-4, -2*x) - 90*gamma(-5, -x) + 480*gamma
(-5, -2*x)
________________________________________________________________________________________
mupad [B] time = 4.37, size = 96, normalized size = 2.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(72*x + exp(2*exp(2))*(3*x^2 - 15) + exp(2*x)*(6*x + 3*x^2 - 2*x^3 - 15) - exp(x)*(42*x - 24*x^2 + 2*x^3
+ 6*x^4 - 4*x^5 - 90) - 90*x^2 + 12*x^3 + x^4 - 4*x^6 + exp(exp(2))*(18*x^2 - 24*x + 4*x^3 - 4*x^4 + exp(x)*(6
*x + 6*x^2 - 2*x^3 - 30) + 90) - 135)/x^6,x)
[Out]
4*x + (exp(2*exp(2)) + exp(2*x) + 2*exp(x + exp(2)) + 6*exp(exp(2)) + 6*exp(x) - 30)/x^3 - (3*(exp(exp(2)) + e
xp(x) - 3)^2)/x^5 - (4*exp(exp(2)) + 4*exp(x) - 1)/x + (2*exp(exp(2)) + 2*exp(x) + 6)/x^2 - (6*exp(exp(2)) + 6
*exp(x) - 18)/x^4
________________________________________________________________________________________
sympy [B] time = 2.48, size = 141, normalized size = 4.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x**2+15)*exp(exp(2))**2+((2*x**3-6*x**2-6*x+30)*exp(x)+4*x**4-4*x**3-18*x**2+24*x-90)*exp(exp(2
))+(2*x**3-3*x**2-6*x+15)*exp(x)**2+(-4*x**5+6*x**4+2*x**3-24*x**2+42*x-90)*exp(x)+4*x**6-x**4-12*x**3+90*x**2
-72*x+135)/x**6,x)
[Out]
4*x + (x**4*(1 - 4*exp(exp(2))) + x**3*(6 + 2*exp(exp(2))) + x**2*(-30 + 6*exp(exp(2)) + exp(2*exp(2))) + x*(1
8 - 6*exp(exp(2))) - 3*exp(2*exp(2)) - 27 + 18*exp(exp(2)))/x**5 + ((x**7 - 3*x**5)*exp(2*x) + (-4*x**9 + 2*x*
*8 + 6*x**7 + 2*x**7*exp(exp(2)) - 6*x**6 - 6*x**5*exp(exp(2)) + 18*x**5)*exp(x))/x**10
________________________________________________________________________________________