3.73.82
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 22, normalized size of antiderivative = 1.00,
number of steps used = 5, number of rules used = 4, integrand size = 65, = 0.062, Rules used =
{1594, 27, 12, 1620}
Antiderivative was successfully verified.
[In]
Int[(-2592*x^2 + 144*x^3 + 576*x^5 + E^4*(-18 + 4*x^3) + E^2*(432*x - 96*x^4))/(3*E^4*x^3 - 72*E^2*x^4 + 432*x
^5),x]
[Out]
4/(E^2 - 12*x) + 3/x^2 + (4*x)/3
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 1620
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.27
Antiderivative was successfully verified.
[In]
Integrate[(-2592*x^2 + 144*x^3 + 576*x^5 + E^4*(-18 + 4*x^3) + E^2*(432*x - 96*x^4))/(3*E^4*x^3 - 72*E^2*x^4 +
432*x^5),x]
[Out]
(2*(9/(2*x^2) + 2*x - 6/(-E^2 + 12*x)))/3
________________________________________________________________________________________
fricas [A] time = 0.52, size = 42, normalized size = 1.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-18)*exp(2)^2+(-96*x^4+432*x)*exp(2)+576*x^5+144*x^3-2592*x^2)/(3*x^3*exp(2)^2-72*x^4*exp(2)+
432*x^5),x, algorithm="fricas")
[Out]
1/3*(48*x^4 - 12*x^2 - (4*x^3 + 9)*e^2 + 108*x)/(12*x^3 - x^2*e^2)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-18)*exp(2)^2+(-96*x^4+432*x)*exp(2)+576*x^5+144*x^3-2592*x^2)/(3*x^3*exp(2)^2-72*x^4*exp(2)+
432*x^5),x, algorithm="giac")
[Out]
Exception raised: NotImplementedError >> Unable to parse Giac output: 2/3*(288*sageVARx/144+9*1/2/sageVARx^2+7
2*1/24/sqrt(exp(2)^2-exp(4))*ln(sqrt((288*sageVARx-24*exp(2))^2+(-24*sqrt(-exp(2)^2+exp(4)))^2)/sqrt((288*sage
VARx-24*exp(2))^2+(24
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.36
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
gosper |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^3-18)*exp(2)^2+(-96*x^4+432*x)*exp(2)+576*x^5+144*x^3-2592*x^2)/(3*x^3*exp(2)^2-72*x^4*exp(2)+432*x^
5),x,method=_RETURNVERBOSE)
[Out]
4/3*x+(4*x^2+3*exp(2)-36*x)/x^2/(-12*x+exp(2))
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-18)*exp(2)^2+(-96*x^4+432*x)*exp(2)+576*x^5+144*x^3-2592*x^2)/(3*x^3*exp(2)^2-72*x^4*exp(2)+
432*x^5),x, algorithm="maxima")
[Out]
4/3*x - (4*x^2 - 36*x + 3*e^2)/(12*x^3 - x^2*e^2)
________________________________________________________________________________________
mupad [B] time = 4.28, size = 32, normalized size = 1.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(2)*(432*x - 96*x^4) + exp(4)*(4*x^3 - 18) - 2592*x^2 + 144*x^3 + 576*x^5)/(3*x^3*exp(4) - 72*x^4*exp(
2) + 432*x^5),x)
[Out]
(4*x)/3 - (3*exp(2) - 36*x + 4*x^2)/(x^2*(12*x - exp(2)))
________________________________________________________________________________________
sympy [A] time = 0.50, size = 29, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**3-18)*exp(2)**2+(-96*x**4+432*x)*exp(2)+576*x**5+144*x**3-2592*x**2)/(3*x**3*exp(2)**2-72*x**
4*exp(2)+432*x**5),x)
[Out]
4*x/3 + (-4*x**2 + 36*x - 3*exp(2))/(12*x**3 - x**2*exp(2))
________________________________________________________________________________________