Optimal. Leaf size=24 \[ -4+\log \left (\frac {\log (5) \left (3+\frac {\log \left ((e+x)^2\right )}{4 x^2}\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 18, normalized size of antiderivative = 0.75, number of steps used = 4, number of rules used = 3, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6688, 6742, 6684} \begin {gather*} \log \left (12 x^2+\log \left ((x+e)^2\right )\right )-3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x \left (-1+6 e x+6 x^2\right )-3 (e+x) \log \left ((e+x)^2\right )}{x (e+x) \left (12 x^2+\log \left ((e+x)^2\right )\right )} \, dx\\ &=\int \left (-\frac {3}{x}+\frac {2 \left (1+12 e x+12 x^2\right )}{(e+x) \left (12 x^2+\log \left ((e+x)^2\right )\right )}\right ) \, dx\\ &=-3 \log (x)+2 \int \frac {1+12 e x+12 x^2}{(e+x) \left (12 x^2+\log \left ((e+x)^2\right )\right )} \, dx\\ &=-3 \log (x)+\log \left (12 x^2+\log \left ((e+x)^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 18, normalized size = 0.75 \begin {gather*} -3 \log (x)+\log \left (12 x^2+\log \left ((e+x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 24, normalized size = 1.00 \begin {gather*} \log \left (12 \, x^{2} + \log \left (x^{2} + 2 \, x e + e^{2}\right )\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 26, normalized size = 1.08 \begin {gather*} \log \left (-12 \, x^{2} - \log \left (x^{2} + 2 \, x e + e^{2}\right )\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 1.04
method | result | size |
risch | \(-3 \ln \relax (x )+\ln \left (12 x^{2}+\ln \left ({\mathrm e}^{2}+2 x \,{\mathrm e}+x^{2}\right )\right )\) | \(25\) |
norman | \(-3 \ln \relax (x )+\ln \left (12 x^{2}+\ln \left ({\mathrm e}^{2}+2 x \,{\mathrm e}+x^{2}\right )\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 17, normalized size = 0.71 \begin {gather*} \log \left (6 \, x^{2} + \log \left (x + e\right )\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 19, normalized size = 0.79 \begin {gather*} \ln \left (\frac {\ln \left ({\left (x+\mathrm {e}\right )}^2\right )}{12}+x^2\right )-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 1.08 \begin {gather*} - 3 \log {\relax (x )} + \log {\left (12 x^{2} + \log {\left (x^{2} + 2 e x + e^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________