3.73.88 (150+300x+225x2+e3x2(75+900x+450x2))dx

Optimal. Leaf size=17 75(2+x)(2+e3x2+x2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 33, normalized size of antiderivative = 1.94, number of steps used = 7, number of rules used = 4, integrand size = 28, number of rulesintegrand size = 0.143, Rules used = {2226, 2204, 2209, 2212} 75x3+150x2+75e3x2x+150e3x2+150x

Antiderivative was successfully verified.

[In]

Int[150 + 300*x + 225*x^2 + E^(3*x^2)*(75 + 900*x + 450*x^2),x]

[Out]

150*E^(3*x^2) + 150*x + 75*E^(3*x^2)*x + 150*x^2 + 75*x^3

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2212

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 - n + 1)*F^(a + b*(c + d*x)^n))/(b*d*n*Log[F]), x] - Dist[(m - n + 1)/(b*n*Log[F]), Int[(c + d*x)^(m - n)*F^(
a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[0, (m + 1)/n, 5] &&
IntegerQ[n] && (LtQ[0, n, m + 1] || LtQ[m, n, 0])

Rule 2226

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*(u_), x_Symbol] :> Int[ExpandLinearProduct[F^(a + b*(c + d*
x)^n), u, c, d, x], x] /; FreeQ[{F, a, b, c, d, n}, x] && PolynomialQ[u, x]

Rubi steps

integral=150x+150x2+75x3+e3x2(75+900x+450x2)dx=150x+150x2+75x3+(75e3x2+900e3x2x+450e3x2x2)dx=150x+150x2+75x3+75e3x2dx+450e3x2x2dx+900e3x2xdx=150e3x2+150x+75e3x2x+150x2+75x3+2523πerfi(3x)75e3x2dx=150e3x2+150x+75e3x2x+150x2+75x3

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 32, normalized size = 1.88 75(2e3x2+2x+e3x2x+2x2+x3)

Antiderivative was successfully verified.

[In]

Integrate[150 + 300*x + 225*x^2 + E^(3*x^2)*(75 + 900*x + 450*x^2),x]

[Out]

75*(2*E^(3*x^2) + 2*x + E^(3*x^2)*x + 2*x^2 + x^3)

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 25, normalized size = 1.47 75x3+150x2+75(x+2)e(3x2)+150x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((450*x^2+900*x+75)*exp(3*x^2)+225*x^2+300*x+150,x, algorithm="fricas")

[Out]

75*x^3 + 150*x^2 + 75*(x + 2)*e^(3*x^2) + 150*x

________________________________________________________________________________________

giac [A]  time = 0.16, size = 25, normalized size = 1.47 75x3+150x2+75(x+2)e(3x2)+150x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((450*x^2+900*x+75)*exp(3*x^2)+225*x^2+300*x+150,x, algorithm="giac")

[Out]

75*x^3 + 150*x^2 + 75*(x + 2)*e^(3*x^2) + 150*x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 27, normalized size = 1.59




method result size



risch (150+75x)e3x2+75x3+150x2+150x 27
default 150x+150x2+75x3+75xe3x2+150e3x2 32
norman 150x+150x2+75x3+75xe3x2+150e3x2 32



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((450*x^2+900*x+75)*exp(3*x^2)+225*x^2+300*x+150,x,method=_RETURNVERBOSE)

[Out]

(150+75*x)*exp(3*x^2)+75*x^3+150*x^2+150*x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 25, normalized size = 1.47 75x3+150x2+75(x+2)e(3x2)+150x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((450*x^2+900*x+75)*exp(3*x^2)+225*x^2+300*x+150,x, algorithm="maxima")

[Out]

75*x^3 + 150*x^2 + 75*(x + 2)*e^(3*x^2) + 150*x

________________________________________________________________________________________

mupad [B]  time = 4.34, size = 31, normalized size = 1.82 150x+150e3x2+75xe3x2+150x2+75x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(300*x + exp(3*x^2)*(900*x + 450*x^2 + 75) + 225*x^2 + 150,x)

[Out]

150*x + 150*exp(3*x^2) + 75*x*exp(3*x^2) + 150*x^2 + 75*x^3

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 24, normalized size = 1.41 75x3+150x2+150x+(75x+150)e3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((450*x**2+900*x+75)*exp(3*x**2)+225*x**2+300*x+150,x)

[Out]

75*x**3 + 150*x**2 + 150*x + (75*x + 150)*exp(3*x**2)

________________________________________________________________________________________