3.73.94
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 51, normalized size of antiderivative = 2.32,
number of steps used = 1, number of rules used = 1, integrand size = 67, = 0.015, Rules used =
{1587}
Antiderivative was successfully verified.
[In]
Int[(-16 - 8*3^(1/4) - 16*E^2 + 8*x)/(25 + 4*Sqrt[3] + 16*E^4 + E^2*(32 - 16*x) + 3^(1/4)*(16 + 16*E^2 - 8*x)
- 16*x + 4*x^2),x]
[Out]
Log[25 + 4*Sqrt[3] + 16*E^4 + 16*E^2*(2 - x) + 8*3^(1/4)*(2*(1 + E^2) - x) - 16*x + 4*x^2]
Rule 1587
Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 59, normalized size = 2.68
Antiderivative was successfully verified.
[In]
Integrate[(-16 - 8*3^(1/4) - 16*E^2 + 8*x)/(25 + 4*Sqrt[3] + 16*E^4 + E^2*(32 - 16*x) + 3^(1/4)*(16 + 16*E^2 -
8*x) - 16*x + 4*x^2),x]
[Out]
Log[25 + 16*3^(1/4) + 4*Sqrt[3] + 32*E^2 + 16*3^(1/4)*E^2 + 16*E^4 - 16*x - 8*3^(1/4)*x - 16*E^2*x + 4*x^2]
________________________________________________________________________________________
fricas [B] time = 1.31, size = 39, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="fricas")
[Out]
log(4*x^2 - 16*(x - 2)*e^2 - 8*3^(1/4)*(x - 2*e^2 - 2) - 16*x + 4*sqrt(3) + 16*e^4 + 25)
________________________________________________________________________________________
giac [B] time = 0.18, size = 45, normalized size = 2.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="giac")
[Out]
log(4*x^2 - 16*x*e^2 + 16*(3^(1/4) + 2)*e^2 - 8*3^(1/4)*x - 16*x + 4*sqrt(3) + 16*3^(1/4) + 16*e^4 + 25)
________________________________________________________________________________________
maple [A] time = 0.42, size = 44, normalized size = 2.00
|
|
|
method |
result |
size |
|
|
|
derivativedivides |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*x^2-16
*x+25),x,method=_RETURNVERBOSE)
[Out]
ln(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*x^2-16*x+25)
________________________________________________________________________________________
maxima [B] time = 0.44, size = 39, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="maxima")
[Out]
log(4*x^2 - 16*(x - 2)*e^2 - 8*3^(1/4)*(x - 2*e^2 - 2) - 16*x + 4*sqrt(3) + 16*e^4 + 25)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(16*exp(2) - 8*x + 8*3^(1/4) + 16)/(16*exp(4) - 16*x + 4*3^(1/2) + 3^(1/4)*(16*exp(2) - 8*x + 16) + 4*x^2
- exp(2)*(16*x - 32) + 25),x)
[Out]
int(-(16*exp(2) - 8*x + 8*3^(1/4) + 16)/(16*exp(4) - 16*x + 4*3^(1/2) + 3^(1/4)*(16*exp(2) - 8*x + 16) + 4*x^2
- exp(2)*(16*x - 32) + 25), x)
________________________________________________________________________________________
sympy [B] time = 0.35, size = 58, normalized size = 2.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*3**(1/4)-16*exp(2)+8*x-16)/(4*3**(1/2)+(16*exp(2)-8*x+16)*3**(1/4)+16*exp(2)**2+(-16*x+32)*exp(2
)+4*x**2-16*x+25),x)
[Out]
log(4*x**2 + x*(-16*exp(2) - 16 - 8*3**(1/4)) + 4*sqrt(3) + 16*3**(1/4) + 25 + 16*3**(1/4)*exp(2) + 32*exp(2)
+ 16*exp(4))
________________________________________________________________________________________