3.73.94 1683416e2+8x25+43+16e4+e2(3216x)+34(16+16e28x)16x+4x2dx

Optimal. Leaf size=22 log(9+4(2+34+2e2x)2)

________________________________________________________________________________________

Rubi [B]  time = 0.05, antiderivative size = 51, normalized size of antiderivative = 2.32, number of steps used = 1, number of rules used = 1, integrand size = 67, number of rulesintegrand size = 0.015, Rules used = {1587} log(4x216x+16e2(2x)+834(2(1+e2)x)+16e4+43+25)

Antiderivative was successfully verified.

[In]

Int[(-16 - 8*3^(1/4) - 16*E^2 + 8*x)/(25 + 4*Sqrt[3] + 16*E^4 + E^2*(32 - 16*x) + 3^(1/4)*(16 + 16*E^2 - 8*x)
- 16*x + 4*x^2),x]

[Out]

Log[25 + 4*Sqrt[3] + 16*E^4 + 16*E^2*(2 - x) + 8*3^(1/4)*(2*(1 + E^2) - x) - 16*x + 4*x^2]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rubi steps

integral=log(25+43+16e4+16e2(2x)+834(2(1+e2)x)16x+4x2)

________________________________________________________________________________________

Mathematica [B]  time = 0.06, size = 59, normalized size = 2.68 log(25+1634+43+32e2+1634e2+16e416x834x16e2x+4x2)

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 8*3^(1/4) - 16*E^2 + 8*x)/(25 + 4*Sqrt[3] + 16*E^4 + E^2*(32 - 16*x) + 3^(1/4)*(16 + 16*E^2 -
 8*x) - 16*x + 4*x^2),x]

[Out]

Log[25 + 16*3^(1/4) + 4*Sqrt[3] + 32*E^2 + 16*3^(1/4)*E^2 + 16*E^4 - 16*x - 8*3^(1/4)*x - 16*E^2*x + 4*x^2]

________________________________________________________________________________________

fricas [B]  time = 1.31, size = 39, normalized size = 1.77 log(4x216(x2)e28314(x2e22)16x+43+16e4+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="fricas")

[Out]

log(4*x^2 - 16*(x - 2)*e^2 - 8*3^(1/4)*(x - 2*e^2 - 2) - 16*x + 4*sqrt(3) + 16*e^4 + 25)

________________________________________________________________________________________

giac [B]  time = 0.18, size = 45, normalized size = 2.05 log(4x216xe2+16(314+2)e28314x16x+43+16314+16e4+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="giac")

[Out]

log(4*x^2 - 16*x*e^2 + 16*(3^(1/4) + 2)*e^2 - 8*3^(1/4)*x - 16*x + 4*sqrt(3) + 16*3^(1/4) + 16*e^4 + 25)

________________________________________________________________________________________

maple [A]  time = 0.42, size = 44, normalized size = 2.00




method result size



derivativedivides ln(43+(16e28x+16)314+16e4+(16x+32)e2+4x216x+25) 44
risch ln(4x2+(831416e216)x+16e4+16314e2+32e2+43+16314+25) 47
default ln(16e4+16314e216e2x8314x+4x2+32e2+43+1631416x+25) 50



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*x^2-16
*x+25),x,method=_RETURNVERBOSE)

[Out]

ln(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*x^2-16*x+25)

________________________________________________________________________________________

maxima [B]  time = 0.44, size = 39, normalized size = 1.77 log(4x216(x2)e28314(x2e22)16x+43+16e4+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*3^(1/4)-16*exp(2)+8*x-16)/(4*3^(1/2)+(16*exp(2)-8*x+16)*3^(1/4)+16*exp(2)^2+(-16*x+32)*exp(2)+4*
x^2-16*x+25),x, algorithm="maxima")

[Out]

log(4*x^2 - 16*(x - 2)*e^2 - 8*3^(1/4)*(x - 2*e^2 - 2) - 16*x + 4*sqrt(3) + 16*e^4 + 25)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 16e28x+831/4+1616e416x+43+31/4(16e28x+16)+4x2e2(16x32)+25dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(16*exp(2) - 8*x + 8*3^(1/4) + 16)/(16*exp(4) - 16*x + 4*3^(1/2) + 3^(1/4)*(16*exp(2) - 8*x + 16) + 4*x^2
 - exp(2)*(16*x - 32) + 25),x)

[Out]

int(-(16*exp(2) - 8*x + 8*3^(1/4) + 16)/(16*exp(4) - 16*x + 4*3^(1/2) + 3^(1/4)*(16*exp(2) - 8*x + 16) + 4*x^2
 - exp(2)*(16*x - 32) + 25), x)

________________________________________________________________________________________

sympy [B]  time = 0.35, size = 58, normalized size = 2.64 log(4x2+x(16e216834)+43+1634+25+1634e2+32e2+16e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*3**(1/4)-16*exp(2)+8*x-16)/(4*3**(1/2)+(16*exp(2)-8*x+16)*3**(1/4)+16*exp(2)**2+(-16*x+32)*exp(2
)+4*x**2-16*x+25),x)

[Out]

log(4*x**2 + x*(-16*exp(2) - 16 - 8*3**(1/4)) + 4*sqrt(3) + 16*3**(1/4) + 25 + 16*3**(1/4)*exp(2) + 32*exp(2)
+ 16*exp(4))

________________________________________________________________________________________