3.73.100 36+88x2+80x4+40x6+10x8+x10+(80+160x2+120x4+40x6+5x8)log(x)+(80+120x2+60x4+10x6)log2(x)+(40+40x2+10x4)log3(x)+(10+5x2)log4(x)+log5(x)98x241x3240x5120x730x93x11+(209x400x3280x580x75x9+x11)log(x)+(160x200x360x5+10x7+5x9)log2(x)+(40x+30x5+10x7)log3(x)+(10x+25x3+10x5)log4(x)+(7x+5x3)log5(x)+xlog6(x)dx

Optimal. Leaf size=16 log(3log(x)+1(2+x2+log(x))4)

________________________________________________________________________________________

Rubi [B]  time = 4.27, antiderivative size = 138, normalized size of antiderivative = 8.62, number of steps used = 4, number of rules used = 2, integrand size = 254, number of rulesintegrand size = 0.008, Rules used = {6742, 6684} log(3x8+x8(log(x))+24x64x6log2(x)+4x6log(x)+72x46x4log3(x)6x4log2(x)+48x4log(x)+96x24x2log4(x)12x2log3(x)+24x2log2(x)+112x2log(x)log5(x)5log4(x)+40log2(x)+80log(x)+49)4log(x2+log(x)+2)

Antiderivative was successfully verified.

[In]

Int[(36 + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + (80 + 160*x^2 + 120*x^4 + 40*x^6 + 5*x^8)*Log[x] + (80 +
120*x^2 + 60*x^4 + 10*x^6)*Log[x]^2 + (40 + 40*x^2 + 10*x^4)*Log[x]^3 + (10 + 5*x^2)*Log[x]^4 + Log[x]^5)/(-98
*x - 241*x^3 - 240*x^5 - 120*x^7 - 30*x^9 - 3*x^11 + (-209*x - 400*x^3 - 280*x^5 - 80*x^7 - 5*x^9 + x^11)*Log[
x] + (-160*x - 200*x^3 - 60*x^5 + 10*x^7 + 5*x^9)*Log[x]^2 + (-40*x + 30*x^5 + 10*x^7)*Log[x]^3 + (10*x + 25*x
^3 + 10*x^5)*Log[x]^4 + (7*x + 5*x^3)*Log[x]^5 + x*Log[x]^6),x]

[Out]

-4*Log[2 + x^2 + Log[x]] + Log[49 + 96*x^2 + 72*x^4 + 24*x^6 + 3*x^8 + 80*Log[x] + 112*x^2*Log[x] + 48*x^4*Log
[x] + 4*x^6*Log[x] - x^8*Log[x] + 40*Log[x]^2 + 24*x^2*Log[x]^2 - 6*x^4*Log[x]^2 - 4*x^6*Log[x]^2 - 12*x^2*Log
[x]^3 - 6*x^4*Log[x]^3 - 5*Log[x]^4 - 4*x^2*Log[x]^4 - Log[x]^5]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(4(1+2x2)x(2+x2+log(x))+(2+x2+log(x))3(1023x2+5log(x)+8x2log(x))x(4996x272x424x63x880log(x)112x2log(x)48x4log(x)4x6log(x)+x8log(x)40log2(x)24x2log2(x)+6x4log2(x)+4x6log2(x)+12x2log3(x)+6x4log3(x)+5log4(x)+4x2log4(x)+log5(x)))dx=(41+2x2x(2+x2+log(x))dx)+(2+x2+log(x))3(1023x2+5log(x)+8x2log(x))x(4996x272x424x63x880log(x)112x2log(x)48x4log(x)4x6log(x)+x8log(x)40log2(x)24x2log2(x)+6x4log2(x)+4x6log2(x)+12x2log3(x)+6x4log3(x)+5log4(x)+4x2log4(x)+log5(x))dx=4log(2+x2+log(x))+log(49+96x2+72x4+24x6+3x8+80log(x)+112x2log(x)+48x4log(x)+4x6log(x)x8log(x)+40log2(x)+24x2log2(x)6x4log2(x)4x6log2(x)12x2log3(x)6x4log3(x)5log4(x)4x2log4(x)log5(x))

________________________________________________________________________________________

Mathematica [B]  time = 0.56, size = 138, normalized size = 8.62 4log(2+x2+log(x))+log(49+96x2+72x4+24x6+3x8+80log(x)+112x2log(x)+48x4log(x)+4x6log(x)x8log(x)+40log2(x)+24x2log2(x)6x4log2(x)4x6log2(x)12x2log3(x)6x4log3(x)5log4(x)4x2log4(x)log5(x))

Antiderivative was successfully verified.

[In]

Integrate[(36 + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + (80 + 160*x^2 + 120*x^4 + 40*x^6 + 5*x^8)*Log[x] +
(80 + 120*x^2 + 60*x^4 + 10*x^6)*Log[x]^2 + (40 + 40*x^2 + 10*x^4)*Log[x]^3 + (10 + 5*x^2)*Log[x]^4 + Log[x]^5
)/(-98*x - 241*x^3 - 240*x^5 - 120*x^7 - 30*x^9 - 3*x^11 + (-209*x - 400*x^3 - 280*x^5 - 80*x^7 - 5*x^9 + x^11
)*Log[x] + (-160*x - 200*x^3 - 60*x^5 + 10*x^7 + 5*x^9)*Log[x]^2 + (-40*x + 30*x^5 + 10*x^7)*Log[x]^3 + (10*x
+ 25*x^3 + 10*x^5)*Log[x]^4 + (7*x + 5*x^3)*Log[x]^5 + x*Log[x]^6),x]

[Out]

-4*Log[2 + x^2 + Log[x]] + Log[49 + 96*x^2 + 72*x^4 + 24*x^6 + 3*x^8 + 80*Log[x] + 112*x^2*Log[x] + 48*x^4*Log
[x] + 4*x^6*Log[x] - x^8*Log[x] + 40*Log[x]^2 + 24*x^2*Log[x]^2 - 6*x^4*Log[x]^2 - 4*x^6*Log[x]^2 - 12*x^2*Log
[x]^3 - 6*x^4*Log[x]^3 - 5*Log[x]^4 - 4*x^2*Log[x]^4 - Log[x]^5]

________________________________________________________________________________________

fricas [B]  time = 0.84, size = 111, normalized size = 6.94 log(3x824x6+(4x2+5)log(x)4+log(x)572x4+6(x4+2x2)log(x)3+2(2x6+3x412x220)log(x)296x2+(x84x648x4112x280)log(x)49)4log(x2+log(x)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="fricas")

[Out]

log(-3*x^8 - 24*x^6 + (4*x^2 + 5)*log(x)^4 + log(x)^5 - 72*x^4 + 6*(x^4 + 2*x^2)*log(x)^3 + 2*(2*x^6 + 3*x^4 -
 12*x^2 - 20)*log(x)^2 - 96*x^2 + (x^8 - 4*x^6 - 48*x^4 - 112*x^2 - 80)*log(x) - 49) - 4*log(x^2 + log(x) + 2)

________________________________________________________________________________________

giac [B]  time = 1.48, size = 135, normalized size = 8.44 log(x8log(x)3x8+4x6log(x)24x6log(x)+6x4log(x)324x6+6x4log(x)2+4x2log(x)448x4log(x)+12x2log(x)3+log(x)572x424x2log(x)2+5log(x)4112x2log(x)96x240log(x)280log(x)49)4log(x2+log(x)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="giac")

[Out]

log(x^8*log(x) - 3*x^8 + 4*x^6*log(x)^2 - 4*x^6*log(x) + 6*x^4*log(x)^3 - 24*x^6 + 6*x^4*log(x)^2 + 4*x^2*log(
x)^4 - 48*x^4*log(x) + 12*x^2*log(x)^3 + log(x)^5 - 72*x^4 - 24*x^2*log(x)^2 + 5*log(x)^4 - 112*x^2*log(x) - 9
6*x^2 - 40*log(x)^2 - 80*log(x) - 49) - 4*log(x^2 + log(x) + 2)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 112, normalized size = 7.00




method result size



risch 4ln(2+x2+ln(x))+ln(ln(x)5+(4x2+5)ln(x)4+(6x4+12x2)ln(x)3+(4x6+6x424x240)ln(x)2+(x84x648x4112x280)ln(x)3x824x672x496x249) 112



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(x)^5+(5*x^2+10)*ln(x)^4+(10*x^4+40*x^2+40)*ln(x)^3+(10*x^6+60*x^4+120*x^2+80)*ln(x)^2+(5*x^8+40*x^6+12
0*x^4+160*x^2+80)*ln(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*ln(x)^6+(5*x^3+7*x)*ln(x)^5+(10*x^5+25*x^3+10*
x)*ln(x)^4+(10*x^7+30*x^5-40*x)*ln(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*ln(x)^2+(x^11-5*x^9-80*x^7-280*x^5
-400*x^3-209*x)*ln(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x,method=_RETURNVERBOSE)

[Out]

-4*ln(2+x^2+ln(x))+ln(ln(x)^5+(4*x^2+5)*ln(x)^4+(6*x^4+12*x^2)*ln(x)^3+(4*x^6+6*x^4-24*x^2-40)*ln(x)^2+(x^8-4*
x^6-48*x^4-112*x^2-80)*ln(x)-3*x^8-24*x^6-72*x^4-96*x^2-49)

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 111, normalized size = 6.94 log(3x824x6+(4x2+5)log(x)4+log(x)572x4+6(x4+2x2)log(x)3+2(2x6+3x412x220)log(x)296x2+(x84x648x4112x280)log(x)49)4log(x2+log(x)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="maxima")

[Out]

log(-3*x^8 - 24*x^6 + (4*x^2 + 5)*log(x)^4 + log(x)^5 - 72*x^4 + 6*(x^4 + 2*x^2)*log(x)^3 + 2*(2*x^6 + 3*x^4 -
 12*x^2 - 20)*log(x)^2 - 96*x^2 + (x^8 - 4*x^6 - 48*x^4 - 112*x^2 - 80)*log(x) - 49) - 4*log(x^2 + log(x) + 2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.06 ln(x)4(5x2+10)+ln(x)5+ln(x)3(10x4+40x2+40)+ln(x)(5x8+40x6+120x4+160x2+80)+ln(x)2(10x6+60x4+120x2+80)+88x2+80x4+40x6+10x8+x10+3698xln(x)5(5x3+7x)xln(x)6ln(x)4(10x5+25x3+10x)ln(x)3(10x7+30x540x)+ln(x)(x11+5x9+80x7+280x5+400x3+209x)+ln(x)2(5x910x7+60x5+200x3+160x)+241x3+240x5+120x7+30x9+3x11dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x)^4*(5*x^2 + 10) + log(x)^5 + log(x)^3*(40*x^2 + 10*x^4 + 40) + log(x)*(160*x^2 + 120*x^4 + 40*x^6
+ 5*x^8 + 80) + log(x)^2*(120*x^2 + 60*x^4 + 10*x^6 + 80) + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + 36)/(98
*x - log(x)^5*(7*x + 5*x^3) - x*log(x)^6 - log(x)^4*(10*x + 25*x^3 + 10*x^5) - log(x)^3*(30*x^5 - 40*x + 10*x^
7) + log(x)*(209*x + 400*x^3 + 280*x^5 + 80*x^7 + 5*x^9 - x^11) + log(x)^2*(160*x + 200*x^3 + 60*x^5 - 10*x^7
- 5*x^9) + 241*x^3 + 240*x^5 + 120*x^7 + 30*x^9 + 3*x^11),x)

[Out]

int(-(log(x)^4*(5*x^2 + 10) + log(x)^5 + log(x)^3*(40*x^2 + 10*x^4 + 40) + log(x)*(160*x^2 + 120*x^4 + 40*x^6
+ 5*x^8 + 80) + log(x)^2*(120*x^2 + 60*x^4 + 10*x^6 + 80) + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + 36)/(98
*x - log(x)^5*(7*x + 5*x^3) - x*log(x)^6 - log(x)^4*(10*x + 25*x^3 + 10*x^5) - log(x)^3*(30*x^5 - 40*x + 10*x^
7) + log(x)*(209*x + 400*x^3 + 280*x^5 + 80*x^7 + 5*x^9 - x^11) + log(x)^2*(160*x + 200*x^3 + 60*x^5 - 10*x^7
- 5*x^9) + 241*x^3 + 240*x^5 + 120*x^7 + 30*x^9 + 3*x^11), x)

________________________________________________________________________________________

sympy [B]  time = 1.47, size = 112, normalized size = 7.00 4log(x2+log(x)+2)+log(3x824x672x496x2+(4x2+5)log(x)4+(6x4+12x2)log(x)3+(4x6+6x424x240)log(x)2+(x84x648x4112x280)log(x)+log(x)549)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(x)**5+(5*x**2+10)*ln(x)**4+(10*x**4+40*x**2+40)*ln(x)**3+(10*x**6+60*x**4+120*x**2+80)*ln(x)**2+
(5*x**8+40*x**6+120*x**4+160*x**2+80)*ln(x)+x**10+10*x**8+40*x**6+80*x**4+88*x**2+36)/(x*ln(x)**6+(5*x**3+7*x)
*ln(x)**5+(10*x**5+25*x**3+10*x)*ln(x)**4+(10*x**7+30*x**5-40*x)*ln(x)**3+(5*x**9+10*x**7-60*x**5-200*x**3-160
*x)*ln(x)**2+(x**11-5*x**9-80*x**7-280*x**5-400*x**3-209*x)*ln(x)-3*x**11-30*x**9-120*x**7-240*x**5-241*x**3-9
8*x),x)

[Out]

-4*log(x**2 + log(x) + 2) + log(-3*x**8 - 24*x**6 - 72*x**4 - 96*x**2 + (4*x**2 + 5)*log(x)**4 + (6*x**4 + 12*
x**2)*log(x)**3 + (4*x**6 + 6*x**4 - 24*x**2 - 40)*log(x)**2 + (x**8 - 4*x**6 - 48*x**4 - 112*x**2 - 80)*log(x
) + log(x)**5 - 49)

________________________________________________________________________________________