3.73.100
Optimal. Leaf size=16
________________________________________________________________________________________
Rubi [B] time = 4.27, antiderivative size = 138, normalized size of antiderivative = 8.62,
number of steps used = 4, number of rules used = 2, integrand size = 254, = 0.008, Rules used
= {6742, 6684}
Antiderivative was successfully verified.
[In]
Int[(36 + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + (80 + 160*x^2 + 120*x^4 + 40*x^6 + 5*x^8)*Log[x] + (80 +
120*x^2 + 60*x^4 + 10*x^6)*Log[x]^2 + (40 + 40*x^2 + 10*x^4)*Log[x]^3 + (10 + 5*x^2)*Log[x]^4 + Log[x]^5)/(-98
*x - 241*x^3 - 240*x^5 - 120*x^7 - 30*x^9 - 3*x^11 + (-209*x - 400*x^3 - 280*x^5 - 80*x^7 - 5*x^9 + x^11)*Log[
x] + (-160*x - 200*x^3 - 60*x^5 + 10*x^7 + 5*x^9)*Log[x]^2 + (-40*x + 30*x^5 + 10*x^7)*Log[x]^3 + (10*x + 25*x
^3 + 10*x^5)*Log[x]^4 + (7*x + 5*x^3)*Log[x]^5 + x*Log[x]^6),x]
[Out]
-4*Log[2 + x^2 + Log[x]] + Log[49 + 96*x^2 + 72*x^4 + 24*x^6 + 3*x^8 + 80*Log[x] + 112*x^2*Log[x] + 48*x^4*Log
[x] + 4*x^6*Log[x] - x^8*Log[x] + 40*Log[x]^2 + 24*x^2*Log[x]^2 - 6*x^4*Log[x]^2 - 4*x^6*Log[x]^2 - 12*x^2*Log
[x]^3 - 6*x^4*Log[x]^3 - 5*Log[x]^4 - 4*x^2*Log[x]^4 - Log[x]^5]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.56, size = 138, normalized size = 8.62
Antiderivative was successfully verified.
[In]
Integrate[(36 + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + (80 + 160*x^2 + 120*x^4 + 40*x^6 + 5*x^8)*Log[x] +
(80 + 120*x^2 + 60*x^4 + 10*x^6)*Log[x]^2 + (40 + 40*x^2 + 10*x^4)*Log[x]^3 + (10 + 5*x^2)*Log[x]^4 + Log[x]^5
)/(-98*x - 241*x^3 - 240*x^5 - 120*x^7 - 30*x^9 - 3*x^11 + (-209*x - 400*x^3 - 280*x^5 - 80*x^7 - 5*x^9 + x^11
)*Log[x] + (-160*x - 200*x^3 - 60*x^5 + 10*x^7 + 5*x^9)*Log[x]^2 + (-40*x + 30*x^5 + 10*x^7)*Log[x]^3 + (10*x
+ 25*x^3 + 10*x^5)*Log[x]^4 + (7*x + 5*x^3)*Log[x]^5 + x*Log[x]^6),x]
[Out]
-4*Log[2 + x^2 + Log[x]] + Log[49 + 96*x^2 + 72*x^4 + 24*x^6 + 3*x^8 + 80*Log[x] + 112*x^2*Log[x] + 48*x^4*Log
[x] + 4*x^6*Log[x] - x^8*Log[x] + 40*Log[x]^2 + 24*x^2*Log[x]^2 - 6*x^4*Log[x]^2 - 4*x^6*Log[x]^2 - 12*x^2*Log
[x]^3 - 6*x^4*Log[x]^3 - 5*Log[x]^4 - 4*x^2*Log[x]^4 - Log[x]^5]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 111, normalized size = 6.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="fricas")
[Out]
log(-3*x^8 - 24*x^6 + (4*x^2 + 5)*log(x)^4 + log(x)^5 - 72*x^4 + 6*(x^4 + 2*x^2)*log(x)^3 + 2*(2*x^6 + 3*x^4 -
12*x^2 - 20)*log(x)^2 - 96*x^2 + (x^8 - 4*x^6 - 48*x^4 - 112*x^2 - 80)*log(x) - 49) - 4*log(x^2 + log(x) + 2)
________________________________________________________________________________________
giac [B] time = 1.48, size = 135, normalized size = 8.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="giac")
[Out]
log(x^8*log(x) - 3*x^8 + 4*x^6*log(x)^2 - 4*x^6*log(x) + 6*x^4*log(x)^3 - 24*x^6 + 6*x^4*log(x)^2 + 4*x^2*log(
x)^4 - 48*x^4*log(x) + 12*x^2*log(x)^3 + log(x)^5 - 72*x^4 - 24*x^2*log(x)^2 + 5*log(x)^4 - 112*x^2*log(x) - 9
6*x^2 - 40*log(x)^2 - 80*log(x) - 49) - 4*log(x^2 + log(x) + 2)
________________________________________________________________________________________
maple [B] time = 0.07, size = 112, normalized size = 7.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((ln(x)^5+(5*x^2+10)*ln(x)^4+(10*x^4+40*x^2+40)*ln(x)^3+(10*x^6+60*x^4+120*x^2+80)*ln(x)^2+(5*x^8+40*x^6+12
0*x^4+160*x^2+80)*ln(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*ln(x)^6+(5*x^3+7*x)*ln(x)^5+(10*x^5+25*x^3+10*
x)*ln(x)^4+(10*x^7+30*x^5-40*x)*ln(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*ln(x)^2+(x^11-5*x^9-80*x^7-280*x^5
-400*x^3-209*x)*ln(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x,method=_RETURNVERBOSE)
[Out]
-4*ln(2+x^2+ln(x))+ln(ln(x)^5+(4*x^2+5)*ln(x)^4+(6*x^4+12*x^2)*ln(x)^3+(4*x^6+6*x^4-24*x^2-40)*ln(x)^2+(x^8-4*
x^6-48*x^4-112*x^2-80)*ln(x)-3*x^8-24*x^6-72*x^4-96*x^2-49)
________________________________________________________________________________________
maxima [B] time = 0.41, size = 111, normalized size = 6.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x)^5+(5*x^2+10)*log(x)^4+(10*x^4+40*x^2+40)*log(x)^3+(10*x^6+60*x^4+120*x^2+80)*log(x)^2+(5*x^8
+40*x^6+120*x^4+160*x^2+80)*log(x)+x^10+10*x^8+40*x^6+80*x^4+88*x^2+36)/(x*log(x)^6+(5*x^3+7*x)*log(x)^5+(10*x
^5+25*x^3+10*x)*log(x)^4+(10*x^7+30*x^5-40*x)*log(x)^3+(5*x^9+10*x^7-60*x^5-200*x^3-160*x)*log(x)^2+(x^11-5*x^
9-80*x^7-280*x^5-400*x^3-209*x)*log(x)-3*x^11-30*x^9-120*x^7-240*x^5-241*x^3-98*x),x, algorithm="maxima")
[Out]
log(-3*x^8 - 24*x^6 + (4*x^2 + 5)*log(x)^4 + log(x)^5 - 72*x^4 + 6*(x^4 + 2*x^2)*log(x)^3 + 2*(2*x^6 + 3*x^4 -
12*x^2 - 20)*log(x)^2 - 96*x^2 + (x^8 - 4*x^6 - 48*x^4 - 112*x^2 - 80)*log(x) - 49) - 4*log(x^2 + log(x) + 2)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x)^4*(5*x^2 + 10) + log(x)^5 + log(x)^3*(40*x^2 + 10*x^4 + 40) + log(x)*(160*x^2 + 120*x^4 + 40*x^6
+ 5*x^8 + 80) + log(x)^2*(120*x^2 + 60*x^4 + 10*x^6 + 80) + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + 36)/(98
*x - log(x)^5*(7*x + 5*x^3) - x*log(x)^6 - log(x)^4*(10*x + 25*x^3 + 10*x^5) - log(x)^3*(30*x^5 - 40*x + 10*x^
7) + log(x)*(209*x + 400*x^3 + 280*x^5 + 80*x^7 + 5*x^9 - x^11) + log(x)^2*(160*x + 200*x^3 + 60*x^5 - 10*x^7
- 5*x^9) + 241*x^3 + 240*x^5 + 120*x^7 + 30*x^9 + 3*x^11),x)
[Out]
int(-(log(x)^4*(5*x^2 + 10) + log(x)^5 + log(x)^3*(40*x^2 + 10*x^4 + 40) + log(x)*(160*x^2 + 120*x^4 + 40*x^6
+ 5*x^8 + 80) + log(x)^2*(120*x^2 + 60*x^4 + 10*x^6 + 80) + 88*x^2 + 80*x^4 + 40*x^6 + 10*x^8 + x^10 + 36)/(98
*x - log(x)^5*(7*x + 5*x^3) - x*log(x)^6 - log(x)^4*(10*x + 25*x^3 + 10*x^5) - log(x)^3*(30*x^5 - 40*x + 10*x^
7) + log(x)*(209*x + 400*x^3 + 280*x^5 + 80*x^7 + 5*x^9 - x^11) + log(x)^2*(160*x + 200*x^3 + 60*x^5 - 10*x^7
- 5*x^9) + 241*x^3 + 240*x^5 + 120*x^7 + 30*x^9 + 3*x^11), x)
________________________________________________________________________________________
sympy [B] time = 1.47, size = 112, normalized size = 7.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((ln(x)**5+(5*x**2+10)*ln(x)**4+(10*x**4+40*x**2+40)*ln(x)**3+(10*x**6+60*x**4+120*x**2+80)*ln(x)**2+
(5*x**8+40*x**6+120*x**4+160*x**2+80)*ln(x)+x**10+10*x**8+40*x**6+80*x**4+88*x**2+36)/(x*ln(x)**6+(5*x**3+7*x)
*ln(x)**5+(10*x**5+25*x**3+10*x)*ln(x)**4+(10*x**7+30*x**5-40*x)*ln(x)**3+(5*x**9+10*x**7-60*x**5-200*x**3-160
*x)*ln(x)**2+(x**11-5*x**9-80*x**7-280*x**5-400*x**3-209*x)*ln(x)-3*x**11-30*x**9-120*x**7-240*x**5-241*x**3-9
8*x),x)
[Out]
-4*log(x**2 + log(x) + 2) + log(-3*x**8 - 24*x**6 - 72*x**4 - 96*x**2 + (4*x**2 + 5)*log(x)**4 + (6*x**4 + 12*
x**2)*log(x)**3 + (4*x**6 + 6*x**4 - 24*x**2 - 40)*log(x)**2 + (x**8 - 4*x**6 - 48*x**4 - 112*x**2 - 80)*log(x
) + log(x)**5 - 49)
________________________________________________________________________________________