Optimal. Leaf size=23 \[ \frac {4 x}{5 \left (x+x \left (-21 x+\frac {x^2}{\log (x)}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x-8 x \log (x)+84 \log ^2(x)}{5 x^4+\left (10 x^2-210 x^3\right ) \log (x)+\left (5-210 x+2205 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (x-2 x \log (x)+21 \log ^2(x)\right )}{5 \left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx\\ &=\frac {4}{5} \int \frac {x-2 x \log (x)+21 \log ^2(x)}{\left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx\\ &=\frac {4}{5} \int \left (\frac {21}{(-1+21 x)^2}+\frac {x \left (1-42 x+443 x^2-21 x^3\right )}{(1-21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )^2}-\frac {2 x}{(-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )}\right ) \, dx\\ &=\frac {4}{5 (1-21 x)}+\frac {4}{5} \int \frac {x \left (1-42 x+443 x^2-21 x^3\right )}{(1-21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx-\frac {8}{5} \int \frac {x}{(-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )} \, dx\\ &=\frac {4}{5 (1-21 x)}+\frac {4}{5} \int \left (\frac {1}{9261 \left (x^2+\log (x)-21 x \log (x)\right )^2}+\frac {x}{\left (x^2+\log (x)-21 x \log (x)\right )^2}-\frac {x^2}{21 \left (x^2+\log (x)-21 x \log (x)\right )^2}+\frac {1}{9261 (-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )^2}+\frac {2}{9261 (-1+21 x) \left (x^2+\log (x)-21 x \log (x)\right )^2}\right ) \, dx-\frac {8}{5} \int \left (\frac {1}{21 (-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )}+\frac {1}{21 (-1+21 x) \left (x^2+\log (x)-21 x \log (x)\right )}\right ) \, dx\\ &=\frac {4}{5 (1-21 x)}+\frac {4 \int \frac {1}{\left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx}{46305}+\frac {4 \int \frac {1}{(-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx}{46305}+\frac {8 \int \frac {1}{(-1+21 x) \left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx}{46305}-\frac {4}{105} \int \frac {x^2}{\left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx-\frac {8}{105} \int \frac {1}{(-1+21 x)^2 \left (x^2+\log (x)-21 x \log (x)\right )} \, dx-\frac {8}{105} \int \frac {1}{(-1+21 x) \left (x^2+\log (x)-21 x \log (x)\right )} \, dx+\frac {4}{5} \int \frac {x}{\left (x^2+\log (x)-21 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 19, normalized size = 0.83 \begin {gather*} \frac {4 \log (x)}{5 \left (x^2+\log (x)-21 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 19, normalized size = 0.83 \begin {gather*} \frac {4 \, \log \relax (x)}{5 \, {\left (x^{2} - {\left (21 \, x - 1\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 44, normalized size = 1.91 \begin {gather*} \frac {4 \, x^{2}}{5 \, {\left (21 \, x^{3} - 441 \, x^{2} \log \relax (x) - x^{2} + 42 \, x \log \relax (x) - \log \relax (x)\right )}} - \frac {4}{5 \, {\left (21 \, x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.78
method | result | size |
norman | \(\frac {4 \ln \relax (x )}{5 \left (x^{2}-21 x \ln \relax (x )+\ln \relax (x )\right )}\) | \(18\) |
risch | \(-\frac {4}{5 \left (21 x -1\right )}+\frac {4 x^{2}}{5 \left (21 x -1\right ) \left (x^{2}-21 x \ln \relax (x )+\ln \relax (x )\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 19, normalized size = 0.83 \begin {gather*} \frac {4 \, \log \relax (x)}{5 \, {\left (x^{2} - {\left (21 \, x - 1\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.59, size = 21, normalized size = 0.91 \begin {gather*} \frac {4\,\ln \relax (x)}{5\,\left (\ln \relax (x)-21\,x\,\ln \relax (x)+x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 36, normalized size = 1.57 \begin {gather*} - \frac {4 x^{2}}{- 105 x^{3} + 5 x^{2} + \left (2205 x^{2} - 210 x + 5\right ) \log {\relax (x )}} - \frac {84}{2205 x - 105} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________