Optimal. Leaf size=20 \[ \left (2-e^{e^{-4-e+x}}\right ) x^2 \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 5, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2304, 6742, 2288, 2554} \begin {gather*} 2 x^2 \log (x)-e^{e^{x-e-4}} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 2304
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2+4 \int x \log (x) \, dx+\int e^{e^{-4-e+x}} \left (-x+\left (-2 x-e^{-4-e+x} x^2\right ) \log (x)\right ) \, dx\\ &=2 x^2 \log (x)+\int \left (-e^{e^{-4-e+x}} x-e^{-4-e+e^{-4-e+x}} x \left (2 e^{4+e}+e^x x\right ) \log (x)\right ) \, dx\\ &=2 x^2 \log (x)-\int e^{e^{-4-e+x}} x \, dx-\int e^{-4-e+e^{-4-e+x}} x \left (2 e^{4+e}+e^x x\right ) \log (x) \, dx\\ &=2 x^2 \log (x)-e^{e^{-4-e+x}} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 19, normalized size = 0.95 \begin {gather*} -\left (\left (-2+e^{e^{-4-e+x}}\right ) x^2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 24, normalized size = 1.20 \begin {gather*} -x^{2} e^{\left (e^{\left (x - e - 4\right )}\right )} \log \relax (x) + 2 \, x^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.20 \begin {gather*} -x^{2} e^{\left (e^{\left (x - e - 4\right )}\right )} \log \relax (x) + 2 \, x^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 1.25
method | result | size |
risch | \(-\ln \relax (x ) x^{2} {\mathrm e}^{{\mathrm e}^{x -{\mathrm e}-4}}+2 x^{2} \ln \relax (x )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 24, normalized size = 1.20 \begin {gather*} -x^{2} e^{\left (e^{\left (x - e - 4\right )}\right )} \log \relax (x) + 2 \, x^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.56, size = 20, normalized size = 1.00 \begin {gather*} -x^2\,\ln \relax (x)\,\left ({\mathrm {e}}^{{\mathrm {e}}^{-\mathrm {e}}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 12.55, size = 24, normalized size = 1.20 \begin {gather*} - x^{2} e^{e^{x - 4 - e}} \log {\relax (x )} + 2 x^{2} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________