Optimal. Leaf size=19 \[ e^{3+e^x-x+x^2+3 \log ^4(4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 20, normalized size of antiderivative = 1.05, number of steps used = 1, number of rules used = 1, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6706} \begin {gather*} e^{x^2-x+e^x+3 \left (1+\log ^4(4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{e^x-x+x^2+3 \left (1+\log ^4(4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 1.00 \begin {gather*} e^{3+e^x-x+x^2+3 \log ^4(4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (48 \, \log \relax (2)^{4} + x^{2} - x + e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (48 \, \log \relax (2)^{4} + x^{2} - x + e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 0.95
method | result | size |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{x}+48 \ln \relax (2)^{4}+x^{2}-x +3}\) | \(18\) |
default | \({\mathrm e}^{{\mathrm e}^{x}+48 \ln \relax (2)^{4}+x^{2}-x +3}\) | \(18\) |
norman | \({\mathrm e}^{{\mathrm e}^{x}+48 \ln \relax (2)^{4}+x^{2}-x +3}\) | \(18\) |
risch | \({\mathrm e}^{{\mathrm e}^{x}+48 \ln \relax (2)^{4}+x^{2}-x +3}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (48 \, \log \relax (2)^{4} + x^{2} - x + e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.97, size = 21, normalized size = 1.11 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3\,{\mathrm {e}}^{48\,{\ln \relax (2)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.89 \begin {gather*} e^{x^{2} - x + e^{x} + 3 + 48 \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________