Optimal. Leaf size=25 \[ e^{2/x} \left (x+\log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.28, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 26, number of rules used = 11, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {1593, 6688, 6742, 2206, 2210, 2222, 2228, 2178, 2209, 2555, 12} \begin {gather*} e^{2/x} x+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (x+1)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2178
Rule 2206
Rule 2209
Rule 2210
Rule 2222
Rule 2228
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2/x} \left (3 x+3 x^2\right )+e^{2/x} \left (-3 x-3 x^2+x^3\right ) \log (x)+e^{2/x} (-2-2 x) \log (x) \log \left (\frac {5 \log ^3(x)}{x+x^2}\right )}{x^2 (1+x) \log (x)} \, dx\\ &=\int \frac {e^{2/x} \left (3 x (1+x)+\log (x) \left (x \left (-3-3 x+x^2\right )-2 (1+x) \log \left (\frac {5 \log ^3(x)}{x+x^2}\right )\right )\right )}{x^2 (1+x) \log (x)} \, dx\\ &=\int \left (\frac {e^{2/x} \left (3+3 x-3 \log (x)-3 x \log (x)+x^2 \log (x)\right )}{x (1+x) \log (x)}-\frac {2 e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )}{x^2} \, dx\right )+\int \frac {e^{2/x} \left (3+3 x-3 \log (x)-3 x \log (x)+x^2 \log (x)\right )}{x (1+x) \log (x)} \, dx\\ &=e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+2 \int \frac {e^{2/x} (-3-3 x+\log (x)+2 x \log (x))}{2 x (1+x) \log (x)} \, dx+\int \left (\frac {e^{2/x} \left (-3-3 x+x^2\right )}{x (1+x)}+\frac {3 e^{2/x}}{x \log (x)}\right ) \, dx\\ &=e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+3 \int \frac {e^{2/x}}{x \log (x)} \, dx+\int \frac {e^{2/x} \left (-3-3 x+x^2\right )}{x (1+x)} \, dx+\int \frac {e^{2/x} (-3-3 x+\log (x)+2 x \log (x))}{x (1+x) \log (x)} \, dx\\ &=e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+3 \int \frac {e^{2/x}}{x \log (x)} \, dx+\int \left (e^{2/x}+\frac {e^{2/x}}{-1-x}-\frac {3 e^{2/x}}{x}\right ) \, dx+\int \left (\frac {e^{2/x} (1+2 x)}{x (1+x)}-\frac {3 e^{2/x}}{x \log (x)}\right ) \, dx\\ &=e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )-3 \int \frac {e^{2/x}}{x} \, dx+\int e^{2/x} \, dx+\int \frac {e^{2/x}}{-1-x} \, dx+\int \frac {e^{2/x} (1+2 x)}{x (1+x)} \, dx\\ &=e^{2/x} x+3 \text {Ei}\left (\frac {2}{x}\right )+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+2 \int \frac {e^{2/x}}{x} \, dx-\int \frac {e^{2/x}}{x} \, dx-\int \frac {e^{2/x}}{(-1-x) x} \, dx+\int \left (\frac {e^{2/x}}{x}+\frac {e^{2/x}}{1+x}\right ) \, dx\\ &=e^{2/x} x+2 \text {Ei}\left (\frac {2}{x}\right )+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+\int \frac {e^{2/x}}{x} \, dx+\int \frac {e^{2/x}}{1+x} \, dx-\operatorname {Subst}\left (\int \frac {e^{-2-2 x}}{x} \, dx,x,\frac {-1-x}{x}\right )\\ &=e^{2/x} x-\frac {\text {Ei}\left (2+\frac {2}{x}\right )}{e^2}+\text {Ei}\left (\frac {2}{x}\right )+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+\int \frac {e^{2/x}}{x} \, dx-\int \frac {e^{2/x}}{x (1+x)} \, dx\\ &=e^{2/x} x-\frac {\text {Ei}\left (2+\frac {2}{x}\right )}{e^2}+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )+\operatorname {Subst}\left (\int \frac {e^{-2+2 x}}{x} \, dx,x,\frac {1+x}{x}\right )\\ &=e^{2/x} x+e^{2/x} \log \left (\frac {5 \log ^3(x)}{x (1+x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 24, normalized size = 0.96 \begin {gather*} e^{2/x} \left (x+\log \left (\frac {5 \log ^3(x)}{x+x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 30, normalized size = 1.20 \begin {gather*} x e^{\frac {2}{x}} + e^{\frac {2}{x}} \log \left (\frac {5 \, \log \relax (x)^{3}}{x^{2} + x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (x + 1\right )} e^{\frac {2}{x}} \log \left (\frac {5 \, \log \relax (x)^{3}}{x^{2} + x}\right ) \log \relax (x) - {\left (x^{3} - 3 \, x^{2} - 3 \, x\right )} e^{\frac {2}{x}} \log \relax (x) - 3 \, {\left (x^{2} + x\right )} e^{\frac {2}{x}}}{{\left (x^{3} + x^{2}\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 512, normalized size = 20.48
method | result | size |
risch | \(-{\mathrm e}^{\frac {2}{x}} \ln \left (x +1\right )+3 \,{\mathrm e}^{\frac {2}{x}} \ln \left (\ln \relax (x )\right )-{\mathrm e}^{\frac {2}{x}} \ln \relax (x )+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2} {\mathrm e}^{\frac {2}{x}}-\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i \ln \relax (x )^{3}\right ) {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{3}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x \left (x +1\right )}\right )^{3} {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i \ln \relax (x )^{3}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x \left (x +1\right )}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \ln \relax (x )^{3}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right ) {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{3}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )^{3}\right )^{3} {\mathrm e}^{\frac {2}{x}}}{2}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x \left (x +1\right )}\right )^{2} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right )^{3} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x +1}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )^{3}}{x \left (x +1\right )}\right ) {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3} {\mathrm e}^{\frac {2}{x}}}{2}-\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) {\mathrm e}^{\frac {2}{x}}}{2}+\ln \relax (5) {\mathrm e}^{\frac {2}{x}}+x \,{\mathrm e}^{\frac {2}{x}}\) | \(512\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -e^{\frac {2}{x}} \log \left (x + 1\right ) - \int -\frac {{\left ({\left (x^{2} - 3 \, x - 2 \, \log \relax (5)\right )} \log \relax (x) + 2 \, \log \relax (x)^{2} - 6 \, \log \relax (x) \log \left (\log \relax (x)\right ) + 3 \, x\right )} e^{\frac {2}{x}}}{x^{2} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{2/x}\,\ln \relax (x)\,\left (-x^3+3\,x^2+3\,x\right )-{\mathrm {e}}^{2/x}\,\left (3\,x^2+3\,x\right )+\ln \left (\frac {5\,{\ln \relax (x)}^3}{x^2+x}\right )\,{\mathrm {e}}^{2/x}\,\ln \relax (x)\,\left (2\,x+2\right )}{\ln \relax (x)\,\left (x^3+x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 23.69, size = 19, normalized size = 0.76 \begin {gather*} \left (x + \log {\left (\frac {5 \log {\relax (x )}^{3}}{x^{2} + x} \right )}\right ) e^{\frac {2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________