Optimal. Leaf size=29 \[ \frac {1}{3} \left (3+x \log \left (3 \log \left (3 \left (-2+e^{e^{4+\frac {e^3}{2}}}\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 28, normalized size of antiderivative = 0.97, number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {8} \begin {gather*} \frac {1}{3} x \log \left (3 \log \left (-3 \left (2-e^{e^{4+\frac {e^3}{2}}}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} x \log \left (3 \log \left (-3 \left (2-e^{e^{4+\frac {e^3}{2}}}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 26, normalized size = 0.90 \begin {gather*} \frac {1}{3} x \log \left (3 \log \left (-6+3 e^{e^{\frac {1}{2} \left (8+e^3\right )}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 19, normalized size = 0.66 \begin {gather*} \frac {1}{3} \, x \log \left (3 \, \log \left (3 \, e^{\left (e^{\left (\frac {1}{2} \, e^{3} + 4\right )}\right )} - 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 19, normalized size = 0.66 \begin {gather*} \frac {1}{3} \, x \log \left (3 \, \log \left (3 \, e^{\left (e^{\left (\frac {1}{2} \, e^{3} + 4\right )}\right )} - 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.69
method | result | size |
default | \(\frac {x \ln \left (3 \ln \left (3 \,{\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{3}}{2}+4}}-6\right )\right )}{3}\) | \(20\) |
norman | \(\left (\frac {\ln \relax (3)}{3}+\frac {\ln \left (\ln \relax (3)+\ln \left ({\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{3}}{2}+4}}-2\right )\right )}{3}\right ) x\) | \(25\) |
risch | \(\frac {x \ln \relax (3)}{3}+\frac {x \ln \left (\ln \relax (3)+\ln \left ({\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{3}}{2}+4}}-2\right )\right )}{3}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 0.66 \begin {gather*} \frac {1}{3} \, x \log \left (3 \, \log \left (3 \, e^{\left (e^{\left (\frac {1}{2} \, e^{3} + 4\right )}\right )} - 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 19, normalized size = 0.66 \begin {gather*} \frac {x\,\ln \left (3\,\ln \left (3\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^3}{2}+4}}-6\right )\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 20, normalized size = 0.69 \begin {gather*} \frac {x \log {\left (3 \log {\left (-6 + 3 e^{e^{4 + \frac {e^{3}}{2}}} \right )} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________