Optimal. Leaf size=27 \[ \frac {(2+x) \left (2+(16+x)^2 \log ^2(1+2 x)\right )}{1+e^x} \]
________________________________________________________________________________________
Rubi [F] time = 8.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+4 x+e^x \left (-2-6 x-4 x^2\right )+\left (2048+1280 x+136 x^2+4 x^3+e^x \left (2048+1280 x+136 x^2+4 x^3\right )\right ) \log (1+2 x)+\left (320+708 x+139 x^2+6 x^3+e^x \left (-192-636 x-535 x^2-63 x^3-2 x^4\right )\right ) \log ^2(1+2 x)}{1+2 x+e^{2 x} (1+2 x)+e^x (2+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 (1+2 x) \left (-1+e^x (1+x)\right )+4 \left (1+e^x\right ) (2+x) (16+x)^2 \log (1+2 x)-\left (16+33 x+2 x^2\right ) \left (-20-3 x+e^x \left (12+15 x+x^2\right )\right ) \log ^2(1+2 x)}{\left (1+e^x\right )^2 (1+2 x)} \, dx\\ &=\int \left (\frac {(2+x) \left (2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2}-\frac {2+6 x+4 x^2-2048 \log (1+2 x)-1280 x \log (1+2 x)-136 x^2 \log (1+2 x)-4 x^3 \log (1+2 x)+192 \log ^2(1+2 x)+636 x \log ^2(1+2 x)+535 x^2 \log ^2(1+2 x)+63 x^3 \log ^2(1+2 x)+2 x^4 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}\right ) \, dx\\ &=\int \frac {(2+x) \left (2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2} \, dx-\int \frac {2+6 x+4 x^2-2048 \log (1+2 x)-1280 x \log (1+2 x)-136 x^2 \log (1+2 x)-4 x^3 \log (1+2 x)+192 \log ^2(1+2 x)+636 x \log ^2(1+2 x)+535 x^2 \log ^2(1+2 x)+63 x^3 \log ^2(1+2 x)+2 x^4 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx\\ &=\int \frac {(2+x) \left (2+(16+x)^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2} \, dx-\int \frac {2+6 x+4 x^2-4 (2+x) (16+x)^2 \log (1+2 x)+\left (192+636 x+535 x^2+63 x^3+2 x^4\right ) \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx\\ &=-\int \left (\frac {2}{\left (1+e^x\right ) (1+2 x)}+\frac {6 x}{\left (1+e^x\right ) (1+2 x)}+\frac {4 x^2}{\left (1+e^x\right ) (1+2 x)}-\frac {2048 \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)}-\frac {1280 x \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)}-\frac {136 x^2 \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)}-\frac {4 x^3 \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)}+\frac {192 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}+\frac {636 x \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}+\frac {535 x^2 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}+\frac {63 x^3 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}+\frac {2 x^4 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)}\right ) \, dx+\int \left (\frac {2 \left (2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2}+\frac {x \left (2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\left (1+e^x\right ) (1+2 x)} \, dx\right )-2 \int \frac {x^4 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx+2 \int \frac {2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)}{\left (1+e^x\right )^2} \, dx-4 \int \frac {x^2}{\left (1+e^x\right ) (1+2 x)} \, dx+4 \int \frac {x^3 \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx-6 \int \frac {x}{\left (1+e^x\right ) (1+2 x)} \, dx-63 \int \frac {x^3 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx+136 \int \frac {x^2 \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx-192 \int \frac {\log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx-535 \int \frac {x^2 \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx-636 \int \frac {x \log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx+1280 \int \frac {x \log (1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx+2048 \int \frac {\log (1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx+\int \frac {x \left (2+256 \log ^2(1+2 x)+32 x \log ^2(1+2 x)+x^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2} \, dx\\ &=-\left (2 \int \frac {1}{\left (1+e^x\right ) (1+2 x)} \, dx\right )+2 \int \frac {2+(16+x)^2 \log ^2(1+2 x)}{\left (1+e^x\right )^2} \, dx-2 \int \left (-\frac {\log ^2(1+2 x)}{16 \left (1+e^x\right )}+\frac {x \log ^2(1+2 x)}{8 \left (1+e^x\right )}-\frac {x^2 \log ^2(1+2 x)}{4 \left (1+e^x\right )}+\frac {x^3 \log ^2(1+2 x)}{2 \left (1+e^x\right )}+\frac {\log ^2(1+2 x)}{16 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-4 \int \left (-\frac {1}{4 \left (1+e^x\right )}+\frac {x}{2 \left (1+e^x\right )}+\frac {1}{4 \left (1+e^x\right ) (1+2 x)}\right ) \, dx+4 \int \left (\frac {\log (1+2 x)}{8 \left (1+e^x\right )}-\frac {x \log (1+2 x)}{4 \left (1+e^x\right )}+\frac {x^2 \log (1+2 x)}{2 \left (1+e^x\right )}-\frac {\log (1+2 x)}{8 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-6 \int \left (\frac {1}{2 \left (1+e^x\right )}-\frac {1}{2 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-63 \int \left (\frac {\log ^2(1+2 x)}{8 \left (1+e^x\right )}-\frac {x \log ^2(1+2 x)}{4 \left (1+e^x\right )}+\frac {x^2 \log ^2(1+2 x)}{2 \left (1+e^x\right )}-\frac {\log ^2(1+2 x)}{8 \left (1+e^x\right ) (1+2 x)}\right ) \, dx+136 \int \left (-\frac {\log (1+2 x)}{4 \left (1+e^x\right )}+\frac {x \log (1+2 x)}{2 \left (1+e^x\right )}+\frac {\log (1+2 x)}{4 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-192 \int \frac {\log ^2(1+2 x)}{\left (1+e^x\right ) (1+2 x)} \, dx-535 \int \left (-\frac {\log ^2(1+2 x)}{4 \left (1+e^x\right )}+\frac {x \log ^2(1+2 x)}{2 \left (1+e^x\right )}+\frac {\log ^2(1+2 x)}{4 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-636 \int \left (\frac {\log ^2(1+2 x)}{2 \left (1+e^x\right )}-\frac {\log ^2(1+2 x)}{2 \left (1+e^x\right ) (1+2 x)}\right ) \, dx+1280 \int \left (\frac {\log (1+2 x)}{2 \left (1+e^x\right )}-\frac {\log (1+2 x)}{2 \left (1+e^x\right ) (1+2 x)}\right ) \, dx-2048 \int \frac {2 \int \frac {1}{\left (1+e^x\right ) (1+2 x)} \, dx}{1+2 x} \, dx+(2048 \log (1+2 x)) \int \frac {1}{\left (1+e^x\right ) (1+2 x)} \, dx+\int \frac {x \left (2+(16+x)^2 \log ^2(1+2 x)\right )}{\left (1+e^x\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 27, normalized size = 1.00 \begin {gather*} \frac {(2+x) \left (2+(16+x)^2 \log ^2(1+2 x)\right )}{1+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 34, normalized size = 1.26 \begin {gather*} \frac {{\left (x^{3} + 34 \, x^{2} + 320 \, x + 512\right )} \log \left (2 \, x + 1\right )^{2} + 2 \, x + 4}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 58, normalized size = 2.15 \begin {gather*} \frac {x^{3} \log \left (2 \, x + 1\right )^{2} + 34 \, x^{2} \log \left (2 \, x + 1\right )^{2} + 320 \, x \log \left (2 \, x + 1\right )^{2} + 512 \, \log \left (2 \, x + 1\right )^{2} + 2 \, x + 4}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 41, normalized size = 1.52
method | result | size |
risch | \(\frac {\left (x^{3}+34 x^{2}+320 x +512\right ) \ln \left (2 x +1\right )^{2}}{{\mathrm e}^{x}+1}+\frac {2 x +4}{{\mathrm e}^{x}+1}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 34, normalized size = 1.26 \begin {gather*} \frac {{\left (x^{3} + 34 \, x^{2} + 320 \, x + 512\right )} \log \left (2 \, x + 1\right )^{2} + 2 \, x + 4}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.78, size = 41, normalized size = 1.52 \begin {gather*} \frac {2\,x+4}{{\mathrm {e}}^x+1}+\frac {{\ln \left (2\,x+1\right )}^2\,\left (x^3+34\,x^2+320\,x+512\right )}{{\mathrm {e}}^x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 56, normalized size = 2.07 \begin {gather*} \frac {x^{3} \log {\left (2 x + 1 \right )}^{2} + 34 x^{2} \log {\left (2 x + 1 \right )}^{2} + 320 x \log {\left (2 x + 1 \right )}^{2} + 2 x + 512 \log {\left (2 x + 1 \right )}^{2} + 4}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________