Optimal. Leaf size=24 \[ \frac {5 \log (2)}{16 \left (4+\frac {2 \log ^{-x^2}(x)}{\log (3)}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log ^{2 x^2}(x) \left (5 x \log (2) \log ^2(3)+10 x \log (2) \log ^2(3) \log (x) \log (\log (x))\right )}{32 \log (x)+192 \log (3) \log ^{1+x^2}(x)+384 \log ^2(3) \log ^{1+2 x^2}(x)+256 \log ^3(3) \log ^{1+3 x^2}(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x \log (2) \log ^2(3) \log ^{-1+2 x^2}(x) (1+2 \log (x) \log (\log (x)))}{32 \left (1+\log (9) \log ^{x^2}(x)\right )^3} \, dx\\ &=\frac {1}{32} \left (5 \log (2) \log ^2(3)\right ) \int \frac {x \log ^{-1+2 x^2}(x) (1+2 \log (x) \log (\log (x)))}{\left (1+\log (9) \log ^{x^2}(x)\right )^3} \, dx\\ &=\frac {1}{32} \left (5 \log (2) \log ^2(3)\right ) \int \left (\frac {x \log ^{-1+2 x^2}(x)}{\left (1+\log (9) \log ^{x^2}(x)\right )^3}+\frac {2 x \log ^{2 x^2}(x) \log (\log (x))}{\left (1+\log (9) \log ^{x^2}(x)\right )^3}\right ) \, dx\\ &=\frac {1}{32} \left (5 \log (2) \log ^2(3)\right ) \int \frac {x \log ^{-1+2 x^2}(x)}{\left (1+\log (9) \log ^{x^2}(x)\right )^3} \, dx+\frac {1}{16} \left (5 \log (2) \log ^2(3)\right ) \int \frac {x \log ^{2 x^2}(x) \log (\log (x))}{\left (1+\log (9) \log ^{x^2}(x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 38, normalized size = 1.58 \begin {gather*} -\frac {5 \log (2) \log ^2(3) \left (1+\log (81) \log ^{x^2}(x)\right )}{64 \log ^2(9) \left (1+\log (9) \log ^{x^2}(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 45, normalized size = 1.88 \begin {gather*} -\frac {5 \, {\left (4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) \log \relax (2) + \log \relax (2)\right )}}{256 \, {\left (4 \, \log \relax (x)^{2 \, x^{2}} \log \relax (3)^{2} + 4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.06, size = 73, normalized size = 3.04 \begin {gather*} -\frac {5 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) \log \relax (2)}{64 \, {\left (4 \, \log \relax (x)^{2 \, x^{2}} \log \relax (3)^{2} + 4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) + 1\right )}} - \frac {5 \, \log \relax (2)}{256 \, {\left (4 \, \log \relax (x)^{2 \, x^{2}} \log \relax (3)^{2} + 4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.29
method | result | size |
risch | \(-\frac {5 \ln \relax (2) \left (4 \ln \relax (3) \ln \relax (x )^{x^{2}}+1\right )}{256 \left (2 \ln \relax (3) \ln \relax (x )^{x^{2}}+1\right )^{2}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 45, normalized size = 1.88 \begin {gather*} -\frac {5 \, {\left (4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) \log \relax (2) + \log \relax (2)\right )}}{256 \, {\left (4 \, \log \relax (x)^{2 \, x^{2}} \log \relax (3)^{2} + 4 \, \log \relax (x)^{\left (x^{2}\right )} \log \relax (3) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 30, normalized size = 1.25 \begin {gather*} -\frac {5\,\ln \relax (2)\,\left (4\,\ln \relax (3)\,{\ln \relax (x)}^{x^2}+1\right )}{256\,{\left (2\,\ln \relax (3)\,{\ln \relax (x)}^{x^2}+1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 60, normalized size = 2.50 \begin {gather*} \frac {- 20 e^{x^{2} \log {\left (\log {\relax (x )} \right )}} \log {\relax (2 )} \log {\relax (3 )} - 5 \log {\relax (2 )}}{1024 e^{2 x^{2} \log {\left (\log {\relax (x )} \right )}} \log {\relax (3 )}^{2} + 1024 e^{x^{2} \log {\left (\log {\relax (x )} \right )}} \log {\relax (3 )} + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________