Optimal. Leaf size=26 \[ 2+64^x \log ^x\left (\left (5-e^{e^x}\right )^2 (1+x)^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64^x \log ^{-1+x}\left (25+50 x+25 x^2+e^{e^x} \left (-10-20 x-10 x^2\right )+e^{2 e^x} \left (1+2 x+x^2\right )\right ) \left (-10 x+e^{e^x} \left (2 x+e^x \left (2 x+2 x^2\right )\right )+\left (-5-5 x+e^{e^x} (1+x)\right ) \log \left (25+50 x+25 x^2+e^{e^x} \left (-10-20 x-10 x^2\right )+e^{2 e^x} \left (1+2 x+x^2\right )\right ) \log \left (64 \log \left (25+50 x+25 x^2+e^{e^x} \left (-10-20 x-10 x^2\right )+e^{2 e^x} \left (1+2 x+x^2\right )\right )\right )\right )}{-5-5 x+e^{e^x} (1+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64^x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \left (10 x-2 e^{e^x} x \left (1+e^x (1+x)\right )-\left (-5+e^{e^x}\right ) (1+x) \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )\right )}{\left (5-e^{e^x}\right ) (1+x)} \, dx\\ &=\int \left (\frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}}+\frac {64^x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \left (2 x+\log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )+x \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )\right )}{1+x}\right ) \, dx\\ &=\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int \frac {64^x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \left (2 x+\log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )+x \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )\right )}{1+x} \, dx\\ &=\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int \frac {64^x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \left (2 x+(1+x) \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )\right )}{1+x} \, dx\\ &=\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int \left (\frac {2^{1+6 x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{1+x}+64^x \log ^x\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right )\right ) \, dx\\ &=\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int \frac {2^{1+6 x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{1+x} \, dx+\int 64^x \log ^x\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right ) \, dx\\ &=\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int \left (2^{1+6 x} \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )+\frac {2^{1+6 x} \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-1-x}\right ) \, dx+\int 64^x \log ^x\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right ) \, dx\\ &=\int 2^{1+6 x} \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \, dx+\int \frac {2^{1+6 x} \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-1-x} \, dx+\int \frac {2^{1+6 x} e^{e^x+x} x \log ^{-1+x}\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )}{-5+e^{e^x}} \, dx+\int 64^x \log ^x\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \log \left (64 \log \left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.98, size = 22, normalized size = 0.85 \begin {gather*} 64^x \log ^x\left (\left (-5+e^{e^x}\right )^2 (1+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 42, normalized size = 1.62 \begin {gather*} \left (64 \, \log \left (25 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, e^{x}\right )} - 10 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (e^{x}\right )} + 50 \, x + 25\right )\right )^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left ({\left (x + 1\right )} e^{\left (e^{x}\right )} - 5 \, x - 5\right )} \log \left (25 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, e^{x}\right )} - 10 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (e^{x}\right )} + 50 \, x + 25\right ) \log \left (64 \, \log \left (25 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, e^{x}\right )} - 10 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (e^{x}\right )} + 50 \, x + 25\right )\right ) + 2 \, {\left ({\left (x^{2} + x\right )} e^{x} + x\right )} e^{\left (e^{x}\right )} - 10 \, x\right )} \left (64 \, \log \left (25 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, e^{x}\right )} - 10 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (e^{x}\right )} + 50 \, x + 25\right )\right )^{x}}{{\left ({\left (x + 1\right )} e^{\left (e^{x}\right )} - 5 \, x - 5\right )} \log \left (25 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, e^{x}\right )} - 10 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (e^{x}\right )} + 50 \, x + 25\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 170, normalized size = 6.54
method | result | size |
risch | \(\left (128 \ln \left (x +1\right )+128 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )-32 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )+\mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )\right )^{2}-32 i \pi \,\mathrm {csgn}\left (i \left (x +1\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left (x +1\right )^{2}\right )+\mathrm {csgn}\left (i \left (x +1\right )\right )\right )^{2}-32 i \pi \,\mathrm {csgn}\left (i \left (x +1\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left (x +1\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )+\mathrm {csgn}\left (i \left (x +1\right )^{2}\right )\right ) \left (-\mathrm {csgn}\left (i \left (x +1\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )+\mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )\right )\right )^{x}\) | \(170\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 21, normalized size = 0.81 \begin {gather*} e^{\left (7 \, x \log \relax (2) + x \log \left (\log \left (x + 1\right ) + \log \left (e^{\left (e^{x}\right )} - 5\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.96, size = 60, normalized size = 2.31 \begin {gather*} 2^{6\,x}\,{\ln \left (50\,x-10\,{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^{2\,{\mathrm {e}}^x}-20\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}+2\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}-10\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}+25\,x^2+x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+25\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________