Optimal. Leaf size=26 \[ x^{\frac {2}{-x+\frac {1}{2} \log ^4\left (3+e^{3-x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 3.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \left (-24 x-8 e^{3-x} x+\left (12+4 e^{3-x}\right ) \log ^4\left (3+e^{3-x}\right )+\left (24 x+8 e^{3-x} x\right ) \log (x)+16 e^{3-x} x \log ^3\left (3+e^{3-x}\right ) \log (x)\right )}{12 x^3+4 e^{3-x} x^3+\left (-12 x^2-4 e^{3-x} x^2\right ) \log ^4\left (3+e^{3-x}\right )+\left (3 x+e^{3-x} x\right ) \log ^8\left (3+e^{3-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \left (\left (e^3+3 e^x\right ) \log ^4\left (3+e^{3-x}\right )+2 \left (e^3+3 e^x\right ) x (-1+\log (x))+4 e^3 x \log ^3\left (3+e^{3-x}\right ) \log (x)\right )}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx\\ &=4 \int \frac {x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \left (\left (e^3+3 e^x\right ) \log ^4\left (3+e^{3-x}\right )+2 \left (e^3+3 e^x\right ) x (-1+\log (x))+4 e^3 x \log ^3\left (3+e^{3-x}\right ) \log (x)\right )}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx\\ &=4 \int \left (\frac {4 e^3 x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log ^3\left (3+e^{3-x}\right ) \log (x)}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2}+\frac {x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \left (-2 x+\log ^4\left (3+e^{3-x}\right )+2 x \log (x)\right )}{\left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \left (-2 x+\log ^4\left (3+e^{3-x}\right )+2 x \log (x)\right )}{\left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx+\left (16 e^3\right ) \int \frac {x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log ^3\left (3+e^{3-x}\right ) \log (x)}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx\\ &=4 \int \left (\frac {x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}}}{-2 x+\log ^4\left (3+e^{3-x}\right )}+\frac {2 x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log (x)}{\left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2}\right ) \, dx+\left (16 e^3\right ) \int \frac {x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log ^3\left (3+e^{3-x}\right ) \log (x)}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx\\ &=4 \int \frac {x^{-1+\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}}}{-2 x+\log ^4\left (3+e^{3-x}\right )} \, dx+8 \int \frac {x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log (x)}{\left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx+\left (16 e^3\right ) \int \frac {x^{\frac {4}{-2 x+\log ^4\left (3+e^{3-x}\right )}} \log ^3\left (3+e^{3-x}\right ) \log (x)}{\left (e^3+3 e^x\right ) \left (2 x-\log ^4\left (3+e^{3-x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 24, normalized size = 0.92 \begin {gather*} x^{-\frac {4}{2 x-\log ^4\left (3+e^{3-x}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 0.81 \begin {gather*} x^{\frac {4}{\log \left (e^{\left (-x + 3\right )} + 3\right )^{4} - 2 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.85
method | result | size |
risch | \(x^{\frac {4}{\ln \left ({\mathrm e}^{3-x}+3\right )^{4}-2 x}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 65, normalized size = 2.50 \begin {gather*} x^{\frac {4}{x^{4} - 4 \, x^{3} \log \left (e^{3} + 3 \, e^{x}\right ) + 6 \, x^{2} \log \left (e^{3} + 3 \, e^{x}\right )^{2} + \log \left (e^{3} + 3 \, e^{x}\right )^{4} - 2 \, {\left (2 \, \log \left (e^{3} + 3 \, e^{x}\right )^{3} + 1\right )} x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.82, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{x^{\frac {4}{2\,x-{\ln \left ({\mathrm {e}}^{-x}\,{\mathrm {e}}^3+3\right )}^4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________