Optimal. Leaf size=24 \[ -e^{-1+\frac {e^4}{\log \left (4 e^{5+x}\right )}}-36 x \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {2282, 14, 2209} \begin {gather*} -36 x-e^{\frac {e^4}{\log \left (4 e^{x+5}\right )}-1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {-36+\frac {e^{3+\frac {e^4}{\log (4 x)}}}{\log ^2(4 x)}}{x} \, dx,x,e^{5+x}\right )\\ &=\operatorname {Subst}\left (\int \left (-\frac {36}{x}+\frac {e^{3+\frac {e^4}{\log (4 x)}}}{x \log ^2(4 x)}\right ) \, dx,x,e^{5+x}\right )\\ &=-36 x+\operatorname {Subst}\left (\int \frac {e^{3+\frac {e^4}{\log (4 x)}}}{x \log ^2(4 x)} \, dx,x,e^{5+x}\right )\\ &=-36 x+\operatorname {Subst}\left (\int \frac {e^{3+\frac {e^4}{x}}}{x^2} \, dx,x,\log \left (4 e^{5+x}\right )\right )\\ &=-e^{-1+\frac {e^4}{\log \left (4 e^{5+x}\right )}}-36 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 1.00 \begin {gather*} -e^{-1+\frac {e^4}{\log \left (4 e^{5+x}\right )}}-36 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 32, normalized size = 1.33 \begin {gather*} -{\left (36 \, x e^{4} + e^{\left (\frac {3 \, x + e^{4} + 6 \, \log \relax (2) + 15}{x + 2 \, \log \relax (2) + 5}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 21, normalized size = 0.88 \begin {gather*} -36 \, x - e^{\left (\frac {e^{4}}{\log \left (4 \, e^{\left (x + 5\right )}\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 28, normalized size = 1.17
method | result | size |
derivativedivides | \(-36 \ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )-{\mathrm e}^{\frac {{\mathrm e}^{4}}{\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )}-1}\) | \(28\) |
default | \(-36 \ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )-{\mathrm e}^{\frac {{\mathrm e}^{4}}{\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )}-1}\) | \(28\) |
risch | \(-36 x -{\mathrm e}^{\frac {-2 \ln \relax (2)-5-\ln \left ({\mathrm e}^{x}\right )+{\mathrm e}^{4}}{2 \ln \relax (2)+5+\ln \left ({\mathrm e}^{x}\right )}}\) | \(33\) |
norman | \(\frac {-36 \ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )^{2}-\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right ) {\mathrm e}^{\frac {-\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )+{\mathrm e}^{4}}{\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )}}}{\ln \left (4 \,{\mathrm e}^{5} {\mathrm e}^{x}\right )}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 27, normalized size = 1.12 \begin {gather*} -e^{\left (\frac {e^{4}}{\log \left (4 \, e^{\left (x + 5\right )}\right )} - 1\right )} - 36 \, \log \left (4 \, e^{\left (x + 5\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 51, normalized size = 2.12 \begin {gather*} -36\,x-\frac {{\mathrm {e}}^{-\frac {5}{x+\ln \relax (4)+5}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x+\ln \relax (4)+5}}\,{\mathrm {e}}^{-\frac {x}{x+\ln \relax (4)+5}}}{2^{\frac {2}{x+\ln \relax (4)+5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________