Optimal. Leaf size=23 \[ 2-x+25 x^2+\frac {x}{-e^{2+x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+50 x^3+e^{4+2 x} (-1+50 x)+e^{2+x} \left (-1+3 x-100 x^2\right )}{e^{4+2 x}-2 e^{2+x} x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x^2+50 x^3+e^{4+2 x} (-1+50 x)+e^{2+x} \left (-1+3 x-100 x^2\right )}{\left (e^{2+x}-x\right )^2} \, dx\\ &=\int \left (-1+\frac {-1+x}{e^{2+x}-x}+50 x+\frac {(-1+x) x}{\left (e^{2+x}-x\right )^2}\right ) \, dx\\ &=-x+25 x^2+\int \frac {-1+x}{e^{2+x}-x} \, dx+\int \frac {(-1+x) x}{\left (e^{2+x}-x\right )^2} \, dx\\ &=-x+25 x^2+\int \left (-\frac {1}{e^{2+x}-x}+\frac {x}{e^{2+x}-x}\right ) \, dx+\int \left (-\frac {x}{\left (e^{2+x}-x\right )^2}+\frac {x^2}{\left (e^{2+x}-x\right )^2}\right ) \, dx\\ &=-x+25 x^2-\int \frac {1}{e^{2+x}-x} \, dx-\int \frac {x}{\left (e^{2+x}-x\right )^2} \, dx+\int \frac {x}{e^{2+x}-x} \, dx+\int \frac {x^2}{\left (e^{2+x}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.87 \begin {gather*} x \left (-1-\frac {1}{e^{2+x}-x}+25 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 38, normalized size = 1.65 \begin {gather*} \frac {25 \, x^{3} - x^{2} - {\left (25 \, x^{2} - x\right )} e^{\left (x + 2\right )} + x}{x - e^{\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 38, normalized size = 1.65 \begin {gather*} \frac {25 \, x^{3} - 25 \, x^{2} e^{\left (x + 2\right )} - x^{2} + x e^{\left (x + 2\right )} + x}{x - e^{\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.96
method | result | size |
risch | \(25 x^{2}-x +\frac {x}{x -{\mathrm e}^{2+x}}\) | \(22\) |
norman | \(\frac {x \,{\mathrm e}^{2+x}+{\mathrm e}^{2+x}-x^{2}+25 x^{3}-25 x^{2} {\mathrm e}^{2+x}}{x -{\mathrm e}^{2+x}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 40, normalized size = 1.74 \begin {gather*} \frac {25 \, x^{3} - x^{2} - {\left (25 \, x^{2} e^{2} - x e^{2}\right )} e^{x} + x}{x - e^{\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.40, size = 24, normalized size = 1.04 \begin {gather*} \frac {{\mathrm {e}}^{x+2}}{x-{\mathrm {e}}^{x+2}}-x+25\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.61 \begin {gather*} 25 x^{2} - x - \frac {x}{- x + e^{x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________