Optimal. Leaf size=26 \[ e^4 \left (1+x \left (x+\frac {x (-3+2 x)}{e^3}\right )+e^x \log (3)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 5, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {12, 6, 2194} \begin {gather*} 2 e x^3-e \left (3-e^3\right ) x^2+e^{x+4} \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^4 \left (-6 x+2 e^3 x+6 x^2\right )+e^{7+x} \log (3)\right ) \, dx}{e^3}\\ &=e \int \left (-6 x+2 e^3 x+6 x^2\right ) \, dx+\frac {\log (3) \int e^{7+x} \, dx}{e^3}\\ &=e^{4+x} \log (3)+e \int \left (\left (-6+2 e^3\right ) x+6 x^2\right ) \, dx\\ &=-e \left (3-e^3\right ) x^2+2 e x^3+e^{4+x} \log (3)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 0.96 \begin {gather*} e \left (\left (-3+e^3\right ) x^2+2 x^3+e^{3+x} \log (3)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 31, normalized size = 1.19 \begin {gather*} {\left (x^{2} e^{7} + {\left (2 \, x^{3} - 3 \, x^{2}\right )} e^{4} + e^{\left (x + 7\right )} \log \relax (3)\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 31, normalized size = 1.19 \begin {gather*} {\left ({\left (2 \, x^{3} + x^{2} e^{3} - 3 \, x^{2}\right )} e^{4} + e^{\left (x + 7\right )} \log \relax (3)\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 31, normalized size = 1.19
method | result | size |
risch | \(x^{2} {\mathrm e} \,{\mathrm e}^{3}+2 x^{3} {\mathrm e}-3 x^{2} {\mathrm e}+\ln \relax (3) {\mathrm e}^{4+x}\) | \(31\) |
norman | \({\mathrm e}^{4} \ln \relax (3) {\mathrm e}^{x}+{\mathrm e}^{4} \left ({\mathrm e}^{3}-3\right ) {\mathrm e}^{-3} x^{2}+2 \,{\mathrm e}^{-3} {\mathrm e}^{4} x^{3}\) | \(34\) |
default | \({\mathrm e}^{-3} \left ({\mathrm e}^{4} \left (x^{2} {\mathrm e}^{3}+2 x^{3}-3 x^{2}\right )+{\mathrm e}^{3} {\mathrm e}^{4} \ln \relax (3) {\mathrm e}^{x}\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.19 \begin {gather*} {\left ({\left (2 \, x^{3} + x^{2} e^{3} - 3 \, x^{2}\right )} e^{4} + e^{\left (x + 7\right )} \log \relax (3)\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.12, size = 29, normalized size = 1.12 \begin {gather*} {\mathrm {e}}^{x+4}\,\ln \relax (3)-x^2\,\left (3\,\mathrm {e}-{\mathrm {e}}^4\right )+2\,x^3\,\mathrm {e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 29, normalized size = 1.12 \begin {gather*} 2 e x^{3} + x^{2} \left (- 3 e + e^{4}\right ) + e^{4} e^{x} \log {\relax (3 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________