Optimal. Leaf size=23 \[ \left (\frac {x \left (-5+e^x+x+e^x \log (4)\right )}{\log (x \log (4))}\right )^x \]
________________________________________________________________________________________
Rubi [F] time = 3.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \left (5-x+e^x (-1-\log (4))+\left (-5+2 x+e^x (1+x+(1+x) \log (4))\right ) \log (x \log (4))+\left (-5+x+e^x (1+\log (4))\right ) \log (x \log (4)) \log \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )\right )}{\left (-5+x+e^x (1+\log (4))\right ) \log (x \log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-6+x) x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))}+\frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \left (-1+\log (x \log (4))+x \log (x \log (4))+\log (x \log (4)) \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right )\right )}{\log (x \log (4))}\right ) \, dx\\ &=\int \frac {(-6+x) x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))} \, dx+\int \frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \left (-1+\log (x \log (4))+x \log (x \log (4))+\log (x \log (4)) \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right )\right )}{\log (x \log (4))} \, dx\\ &=\int \left (\frac {x^2 \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))}+\frac {6 x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{-5+x+e^x (1+\log (4))}\right ) \, dx+\int \left (\frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x (-1+\log (x \log (4))+x \log (x \log (4)))}{\log (x \log (4))}+\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right )\right ) \, dx\\ &=6 \int \frac {x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{-5+x+e^x (1+\log (4))} \, dx+\int \frac {x^2 \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))} \, dx+\int \frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x (-1+\log (x \log (4))+x \log (x \log (4)))}{\log (x \log (4))} \, dx+\int \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right ) \, dx\\ &=6 \int \frac {x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{-5+x+e^x (1+\log (4))} \, dx+\int \left (\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x+x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x-\frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{\log (x \log (4))}\right ) \, dx+\int \frac {x^2 \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))} \, dx+\int \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right ) \, dx\\ &=6 \int \frac {x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{-5+x+e^x (1+\log (4))} \, dx+\int \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \, dx+\int x \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \, dx+\int \frac {x^2 \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{5-x-e^x (1+\log (4))} \, dx-\int \frac {\left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x}{\log (x \log (4))} \, dx+\int \left (\frac {-5 x+x^2+e^x (x+x \log (4))}{\log (x \log (4))}\right )^x \log \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 22, normalized size = 0.96 \begin {gather*} \left (\frac {x \left (-5+x+e^x (1+\log (4))\right )}{\log (x \log (4))}\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 28, normalized size = 1.22 \begin {gather*} \left (\frac {x^{2} + {\left (2 \, x \log \relax (2) + x\right )} e^{x} - 5 \, x}{\log \left (2 \, x \log \relax (2)\right )}\right )^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left ({\left (2 \, \log \relax (2) + 1\right )} e^{x} + x - 5\right )} \log \left (2 \, x \log \relax (2)\right ) \log \left (\frac {x^{2} + {\left (2 \, x \log \relax (2) + x\right )} e^{x} - 5 \, x}{\log \left (2 \, x \log \relax (2)\right )}\right ) - {\left (2 \, \log \relax (2) + 1\right )} e^{x} + {\left ({\left (2 \, {\left (x + 1\right )} \log \relax (2) + x + 1\right )} e^{x} + 2 \, x - 5\right )} \log \left (2 \, x \log \relax (2)\right ) - x + 5\right )} \left (\frac {x^{2} + {\left (2 \, x \log \relax (2) + x\right )} e^{x} - 5 \, x}{\log \left (2 \, x \log \relax (2)\right )}\right )^{x}}{{\left ({\left (2 \, \log \relax (2) + 1\right )} e^{x} + x - 5\right )} \log \left (2 \, x \log \relax (2)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (1+2 \ln \relax (2)\right ) {\mathrm e}^{x}+x -5\right ) \ln \left (2 x \ln \relax (2)\right ) \ln \left (\frac {\left (x +2 x \ln \relax (2)\right ) {\mathrm e}^{x}+x^{2}-5 x}{\ln \left (2 x \ln \relax (2)\right )}\right )+\left (\left (2 \ln \relax (2) \left (x +1\right )+x +1\right ) {\mathrm e}^{x}+2 x -5\right ) \ln \left (2 x \ln \relax (2)\right )+\left (-1-2 \ln \relax (2)\right ) {\mathrm e}^{x}+5-x \right ) {\mathrm e}^{x \ln \left (\frac {\left (x +2 x \ln \relax (2)\right ) {\mathrm e}^{x}+x^{2}-5 x}{\ln \left (2 x \ln \relax (2)\right )}\right )}}{\left (\left (1+2 \ln \relax (2)\right ) {\mathrm e}^{x}+x -5\right ) \ln \left (2 x \ln \relax (2)\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 33, normalized size = 1.43 \begin {gather*} e^{\left (x \log \left ({\left (2 \, \log \relax (2) + 1\right )} e^{x} + x - 5\right ) + x \log \relax (x) - x \log \left (\log \relax (2) + \log \relax (x) + \log \left (\log \relax (2)\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 31, normalized size = 1.35 \begin {gather*} {\left (\frac {x\,{\mathrm {e}}^x-5\,x+x^2+2\,x\,{\mathrm {e}}^x\,\ln \relax (2)}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )+\ln \relax (x)}\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________