Optimal. Leaf size=36 \[ -2-x+\left (e^{x^2}+x\right )^2 \left (-\left (-2+e^{e^{2 x}-x}\right )^2+x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 14.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-1+32 x-24 x^2+4 x^3+e^{2 x^2} \left (-8+66 x-32 x^2+4 x^3\right )+e^{x^2} \left (32-32 x+70 x^2-32 x^3+4 x^4\right )+e^{3 e^{2 x}-3 x} \left (e^{2 x^2} \left (24-48 e^{2 x}-32 x\right )-16 x+24 x^2-48 e^{2 x} x^2+e^{x^2} \left (-16+48 x-96 e^{2 x} x-32 x^2\right )\right )+e^{4 e^{2 x}-4 x} \left (2 x-4 x^2+8 e^{2 x} x^2+e^{2 x^2} \left (-4+8 e^{2 x}+4 x\right )+e^{x^2} \left (2-8 x+16 e^{2 x} x+4 x^2\right )\right )+e^{2 e^{2 x}-2 x} \left (48 x-54 x^2+4 x^3+e^{2 x^2} \left (-50+e^{2 x} (96-8 x)+100 x-8 x^2\right )+e^{2 x} \left (96 x^2-8 x^3\right )+e^{x^2} \left (48-104 x+104 x^2-8 x^3+e^{2 x} \left (192 x-16 x^2\right )\right )\right )+e^{e^{2 x}-x} \left (-64 x+56 x^2-8 x^3+e^{2 x} \left (-64 x^2+16 x^3\right )+e^{2 x^2} \left (40-136 x+32 x^2+e^{2 x} (-64+16 x)\right )+e^{x^2} \left (-64+96 x-144 x^2+32 x^3+e^{2 x} \left (-128 x+32 x^2\right )\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+16 x^2-8 x^3+x^4+\int e^{2 x^2} \left (-8+66 x-32 x^2+4 x^3\right ) \, dx+\int e^{x^2} \left (32-32 x+70 x^2-32 x^3+4 x^4\right ) \, dx+\int e^{3 e^{2 x}-3 x} \left (e^{2 x^2} \left (24-48 e^{2 x}-32 x\right )-16 x+24 x^2-48 e^{2 x} x^2+e^{x^2} \left (-16+48 x-96 e^{2 x} x-32 x^2\right )\right ) \, dx+\int e^{4 e^{2 x}-4 x} \left (2 x-4 x^2+8 e^{2 x} x^2+e^{2 x^2} \left (-4+8 e^{2 x}+4 x\right )+e^{x^2} \left (2-8 x+16 e^{2 x} x+4 x^2\right )\right ) \, dx+\int e^{2 e^{2 x}-2 x} \left (48 x-54 x^2+4 x^3+e^{2 x^2} \left (-50+e^{2 x} (96-8 x)+100 x-8 x^2\right )+e^{2 x} \left (96 x^2-8 x^3\right )+e^{x^2} \left (48-104 x+104 x^2-8 x^3+e^{2 x} \left (192 x-16 x^2\right )\right )\right ) \, dx+\int e^{e^{2 x}-x} \left (-64 x+56 x^2-8 x^3+e^{2 x} \left (-64 x^2+16 x^3\right )+e^{2 x^2} \left (40-136 x+32 x^2+e^{2 x} (-64+16 x)\right )+e^{x^2} \left (-64+96 x-144 x^2+32 x^3+e^{2 x} \left (-128 x+32 x^2\right )\right )\right ) \, dx\\ &=-x+16 x^2-8 x^3+x^4+\int 2 e^{4 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (1+4 e^{x (2+x)}+2 e^{x^2} (-1+x)-2 x+4 e^{2 x} x\right ) \, dx+\int \left (-8 e^{2 x^2}+66 e^{2 x^2} x-32 e^{2 x^2} x^2+4 e^{2 x^2} x^3\right ) \, dx+\int \left (32 e^{x^2}-32 e^{x^2} x+70 e^{x^2} x^2-32 e^{x^2} x^3+4 e^{x^2} x^4\right ) \, dx+\int 8 e^{3 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (-2-6 e^{x (2+x)}+3 x-6 e^{2 x} x-e^{x^2} (-3+4 x)\right ) \, dx+\int 2 e^{2 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (24-4 e^{x (2+x)} (-12+x)-27 x-4 e^{2 x} (-12+x) x+2 x^2-e^{x^2} \left (25-50 x+4 x^2\right )\right ) \, dx+\int 8 e^{e^{2 x}-x} \left (e^{x^2}+x\right ) \left (-8+2 e^{x (2+x)} (-4+x)+7 x+2 e^{2 x} (-4+x) x-x^2+e^{x^2} \left (5-17 x+4 x^2\right )\right ) \, dx\\ &=-x+16 x^2-8 x^3+x^4+2 \int e^{4 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (1+4 e^{x (2+x)}+2 e^{x^2} (-1+x)-2 x+4 e^{2 x} x\right ) \, dx+2 \int e^{2 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (24-4 e^{x (2+x)} (-12+x)-27 x-4 e^{2 x} (-12+x) x+2 x^2-e^{x^2} \left (25-50 x+4 x^2\right )\right ) \, dx+4 \int e^{2 x^2} x^3 \, dx+4 \int e^{x^2} x^4 \, dx-8 \int e^{2 x^2} \, dx+8 \int e^{3 \left (e^{2 x}-x\right )} \left (e^{x^2}+x\right ) \left (-2-6 e^{x (2+x)}+3 x-6 e^{2 x} x-e^{x^2} (-3+4 x)\right ) \, dx+8 \int e^{e^{2 x}-x} \left (e^{x^2}+x\right ) \left (-8+2 e^{x (2+x)} (-4+x)+7 x+2 e^{2 x} (-4+x) x-x^2+e^{x^2} \left (5-17 x+4 x^2\right )\right ) \, dx+32 \int e^{x^2} \, dx-32 \int e^{x^2} x \, dx-32 \int e^{2 x^2} x^2 \, dx-32 \int e^{x^2} x^3 \, dx+66 \int e^{2 x^2} x \, dx+70 \int e^{x^2} x^2 \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 9.35, size = 289, normalized size = 8.03 \begin {gather*} 16 e^{2 x^2}-x+32 e^{x^2} x-8 e^{2 x^2} x+16 x^2-16 e^{x^2} x^2+e^{2 x^2} x^2-8 x^3+2 e^{x^2} x^3+x^4+2 e^{4 e^{2 x}} \left (\frac {1}{2} e^{-4 x+2 x^2}+e^{-4 x+x^2} x+\frac {1}{2} e^{-4 x} x^2\right )-8 e^{3 e^{2 x}} \left (e^{-3 x+2 x^2}+2 e^{-3 x+x^2} x+e^{-3 x} x^2\right )-2 e^{2 e^{2 x}} \left (e^{-2 x+2 x^2} (-12+x)+e^{-2 x+x^2} \left (-24 x+2 x^2\right )+e^{-2 x} \left (-12 x^2+x^3\right )\right )+8 e^{e^{2 x}} \left (e^{-x+2 x^2} (-4+x)+e^{-x+x^2} \left (-8 x+2 x^2\right )+e^{-x} \left (-4 x^2+x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.12, size = 197, normalized size = 5.47 \begin {gather*} x^{4} - 8 \, x^{3} + 16 \, x^{2} + {\left (x^{2} - 8 \, x + 16\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{\left (x^{2}\right )} + 8 \, {\left (x^{3} - 4 \, x^{2} + {\left (x - 4\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{2} - 4 \, x\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-x + e^{\left (2 \, x\right )}\right )} - 2 \, {\left (x^{3} - 12 \, x^{2} + {\left (x - 12\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{2} - 12 \, x\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 8 \, {\left (x^{2} + 2 \, x e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}\right )} e^{\left (-3 \, x + 3 \, e^{\left (2 \, x\right )}\right )} + {\left (x^{2} + 2 \, x e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}\right )} e^{\left (-4 \, x + 4 \, e^{\left (2 \, x\right )}\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 383, normalized size = 10.64 \begin {gather*} x^{4} - 8 \, x^{3} + 16 \, x^{2} + {\left (x^{2} - 8 \, x + 16\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{\left (x^{2}\right )} - 8 \, {\left (x^{2} e^{\left (-2 \, x + 6 \, e^{\left (2 \, x\right )}\right )} + 2 \, x e^{\left (x^{2} - 2 \, x + 6 \, e^{\left (2 \, x\right )}\right )} + e^{\left (2 \, x^{2} - 2 \, x + 6 \, e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-x - 3 \, e^{\left (2 \, x\right )}\right )} - 2 \, {\left (x^{3} e^{\left (4 \, e^{\left (2 \, x\right )}\right )} + 2 \, x^{2} e^{\left (x^{2} + 4 \, e^{\left (2 \, x\right )}\right )} - 12 \, x^{2} e^{\left (4 \, e^{\left (2 \, x\right )}\right )} + x e^{\left (2 \, x^{2} + 4 \, e^{\left (2 \, x\right )}\right )} - 24 \, x e^{\left (x^{2} + 4 \, e^{\left (2 \, x\right )}\right )} - 12 \, e^{\left (2 \, x^{2} + 4 \, e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-2 \, x - 2 \, e^{\left (2 \, x\right )}\right )} + 8 \, {\left (x^{3} e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} + 2 \, x^{2} e^{\left (x^{2} + 2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 4 \, x^{2} e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} + x e^{\left (2 \, x^{2} + 2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 8 \, x e^{\left (x^{2} + 2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 4 \, e^{\left (2 \, x^{2} + 2 \, x + 2 \, e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-3 \, x - e^{\left (2 \, x\right )}\right )} + {\left (x^{2} e^{\left (-4 \, x + 8 \, e^{\left (2 \, x\right )}\right )} + 2 \, x e^{\left (x^{2} - 4 \, x + 8 \, e^{\left (2 \, x\right )}\right )} + e^{\left (2 \, x^{2} - 4 \, x + 8 \, e^{\left (2 \, x\right )}\right )}\right )} e^{\left (-4 \, e^{\left (2 \, x\right )}\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 224, normalized size = 6.22
method | result | size |
risch | \(\left (x^{2}+2 \,{\mathrm e}^{x^{2}} x +{\mathrm e}^{2 x^{2}}\right ) {\mathrm e}^{4 \,{\mathrm e}^{2 x}-4 x}+\left (-8 x^{2}-16 \,{\mathrm e}^{x^{2}} x -8 \,{\mathrm e}^{2 x^{2}}\right ) {\mathrm e}^{3 \,{\mathrm e}^{2 x}-3 x}+\left (-2 x^{3}-4 x^{2} {\mathrm e}^{x^{2}}-2 x \,{\mathrm e}^{2 x^{2}}+24 x^{2}+48 \,{\mathrm e}^{x^{2}} x +24 \,{\mathrm e}^{2 x^{2}}\right ) {\mathrm e}^{2 \,{\mathrm e}^{2 x}-2 x}+\left (8 x^{3}+16 x^{2} {\mathrm e}^{x^{2}}+8 x \,{\mathrm e}^{2 x^{2}}-32 x^{2}-64 \,{\mathrm e}^{x^{2}} x -32 \,{\mathrm e}^{2 x^{2}}\right ) {\mathrm e}^{{\mathrm e}^{2 x}-x}+\left (x^{2}-8 x +16\right ) {\mathrm e}^{2 x^{2}}+\left (2 x^{3}-16 x^{2}+32 x \right ) {\mathrm e}^{x^{2}}+x^{4}-8 x^{3}+16 x^{2}-x\) | \(224\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 197, normalized size = 5.47 \begin {gather*} x^{4} - 8 \, x^{3} + 16 \, x^{2} + {\left (x^{2} - 8 \, x + 16\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{\left (x^{2}\right )} + 8 \, {\left (x^{3} - 4 \, x^{2} + {\left (x - 4\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{2} - 4 \, x\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-x + e^{\left (2 \, x\right )}\right )} - 2 \, {\left (x^{3} - 12 \, x^{2} + {\left (x - 12\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{2} - 12 \, x\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 8 \, {\left (x^{2} + 2 \, x e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}\right )} e^{\left (-3 \, x + 3 \, e^{\left (2 \, x\right )}\right )} + {\left (x^{2} + 2 \, x e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}\right )} e^{\left (-4 \, x + 4 \, e^{\left (2 \, x\right )}\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 225, normalized size = 6.25 \begin {gather*} {\mathrm {e}}^{2\,x^2}\,\left (x^2-8\,x+16\right )-x-{\mathrm {e}}^{3\,{\mathrm {e}}^{2\,x}-3\,x}\,\left (8\,{\mathrm {e}}^{2\,x^2}+16\,x\,{\mathrm {e}}^{x^2}+8\,x^2\right )+{\mathrm {e}}^{x^2}\,\left (2\,x^3-16\,x^2+32\,x\right )+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}-2\,x}\,\left (24\,{\mathrm {e}}^{2\,x^2}+48\,x\,{\mathrm {e}}^{x^2}-2\,x\,{\mathrm {e}}^{2\,x^2}-4\,x^2\,{\mathrm {e}}^{x^2}+24\,x^2-2\,x^3\right )+{\mathrm {e}}^{4\,{\mathrm {e}}^{2\,x}-4\,x}\,\left ({\mathrm {e}}^{2\,x^2}+2\,x\,{\mathrm {e}}^{x^2}+x^2\right )+16\,x^2-8\,x^3+x^4-{\mathrm {e}}^{{\mathrm {e}}^{2\,x}-x}\,\left (32\,{\mathrm {e}}^{2\,x^2}+64\,x\,{\mathrm {e}}^{x^2}-8\,x\,{\mathrm {e}}^{2\,x^2}-16\,x^2\,{\mathrm {e}}^{x^2}+32\,x^2-8\,x^3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.66, size = 230, normalized size = 6.39 \begin {gather*} x^{4} - 8 x^{3} + 16 x^{2} - x + \left (- 8 x^{2} - 16 x e^{x^{2}} - 8 e^{2 x^{2}}\right ) e^{- 3 x + 3 e^{2 x}} + \left (x^{2} - 8 x + 16\right ) e^{2 x^{2}} + \left (x^{2} + 2 x e^{x^{2}} + e^{2 x^{2}}\right ) e^{- 4 x + 4 e^{2 x}} + \left (2 x^{3} - 16 x^{2} + 32 x\right ) e^{x^{2}} + \left (- 2 x^{3} - 4 x^{2} e^{x^{2}} + 24 x^{2} - 2 x e^{2 x^{2}} + 48 x e^{x^{2}} + 24 e^{2 x^{2}}\right ) e^{- 2 x + 2 e^{2 x}} + \left (8 x^{3} + 16 x^{2} e^{x^{2}} - 32 x^{2} + 8 x e^{2 x^{2}} - 64 x e^{x^{2}} - 32 e^{2 x^{2}}\right ) e^{- x + e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________