Optimal. Leaf size=24 \[ 6 e^{-\frac {5}{6}+e^x} \left (-e^x+x\right ) \left (-5+e^x+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-\frac {5}{6}+e^x} \left (-30+18 e^{2 x}-6 e^{3 x}+12 x+e^x \left (30-30 x+6 x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-30 e^{-\frac {5}{6}+e^x}+18 e^{-\frac {5}{6}+e^x+2 x}-6 e^{-\frac {5}{6}+e^x+3 x}+12 e^{-\frac {5}{6}+e^x} x+6 e^{-\frac {5}{6}+e^x+x} \left (5-5 x+x^2\right )\right ) \, dx\\ &=-\left (6 \int e^{-\frac {5}{6}+e^x+3 x} \, dx\right )+6 \int e^{-\frac {5}{6}+e^x+x} \left (5-5 x+x^2\right ) \, dx+12 \int e^{-\frac {5}{6}+e^x} x \, dx+18 \int e^{-\frac {5}{6}+e^x+2 x} \, dx-30 \int e^{-\frac {5}{6}+e^x} \, dx\\ &=6 \int \left (5 e^{-\frac {5}{6}+e^x+x}-5 e^{-\frac {5}{6}+e^x+x} x+e^{-\frac {5}{6}+e^x+x} x^2\right ) \, dx-6 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} x^2 \, dx,x,e^x\right )+12 \int e^{-\frac {5}{6}+e^x} x \, dx+18 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} x \, dx,x,e^x\right )-30 \operatorname {Subst}\left (\int \frac {e^{-\frac {5}{6}+x}}{x} \, dx,x,e^x\right )\\ &=18 e^{-\frac {5}{6}+e^x+x}-6 e^{-\frac {5}{6}+e^x+2 x}-\frac {30 \text {Ei}\left (e^x\right )}{e^{5/6}}+6 \int e^{-\frac {5}{6}+e^x+x} x^2 \, dx+12 \int e^{-\frac {5}{6}+e^x} x \, dx+12 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} x \, dx,x,e^x\right )-18 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} \, dx,x,e^x\right )+30 \int e^{-\frac {5}{6}+e^x+x} \, dx-30 \int e^{-\frac {5}{6}+e^x+x} x \, dx\\ &=-18 e^{-\frac {5}{6}+e^x}+30 e^{-\frac {5}{6}+e^x+x}-6 e^{-\frac {5}{6}+e^x+2 x}-\frac {30 \text {Ei}\left (e^x\right )}{e^{5/6}}+6 \int e^{-\frac {5}{6}+e^x+x} x^2 \, dx+12 \int e^{-\frac {5}{6}+e^x} x \, dx-12 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} \, dx,x,e^x\right )-30 \int e^{-\frac {5}{6}+e^x+x} x \, dx+30 \operatorname {Subst}\left (\int e^{-\frac {5}{6}+x} \, dx,x,e^x\right )\\ &=30 e^{-\frac {5}{6}+e^x+x}-6 e^{-\frac {5}{6}+e^x+2 x}-\frac {30 \text {Ei}\left (e^x\right )}{e^{5/6}}+6 \int e^{-\frac {5}{6}+e^x+x} x^2 \, dx+12 \int e^{-\frac {5}{6}+e^x} x \, dx-30 \int e^{-\frac {5}{6}+e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 41, normalized size = 1.71 \begin {gather*} -6 e^{-\frac {5}{3}+e^x} \left (-5 e^{\frac {5}{6}+x}+e^{\frac {5}{6}+2 x}-e^{5/6} (-5+x) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 24, normalized size = 1.00 \begin {gather*} 6 \, {\left (x^{2} - 5 \, x - e^{\left (2 \, x\right )} + 5 \, e^{x}\right )} e^{\left (e^{x} - \frac {5}{6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 50, normalized size = 2.08 \begin {gather*} 6 \, {\left (x^{2} e^{\left (3 \, x + e^{x} - \frac {5}{6}\right )} - 5 \, x e^{\left (3 \, x + e^{x} - \frac {5}{6}\right )} - e^{\left (5 \, x + e^{x} - \frac {5}{6}\right )} + 5 \, e^{\left (4 \, x + e^{x} - \frac {5}{6}\right )}\right )} e^{\left (-3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.08
method | result | size |
risch | \(\left (6 x^{2}-6 \,{\mathrm e}^{2 x}-30 x +30 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-\frac {5}{6}+{\mathrm e}^{x}}\) | \(26\) |
norman | \(-30 \,{\mathrm e}^{-\frac {5}{6}} x \,{\mathrm e}^{{\mathrm e}^{x}}+6 \,{\mathrm e}^{-\frac {5}{6}} x^{2} {\mathrm e}^{{\mathrm e}^{x}}+30 \,{\mathrm e}^{-\frac {5}{6}} {\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}-6 \,{\mathrm e}^{-\frac {5}{6}} {\mathrm e}^{2 x} {\mathrm e}^{{\mathrm e}^{x}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -30 \, {\rm Ei}\left (e^{x}\right ) e^{\left (-\frac {5}{6}\right )} + 6 \, {\left (x^{2} e^{\frac {1}{6}} - 5 \, x e^{\frac {1}{6}} - e^{\left (2 \, x + \frac {1}{6}\right )} + 5 \, e^{\left (x + \frac {1}{6}\right )}\right )} e^{\left (e^{x} - 1\right )} + 30 \, \int e^{\left (e^{x} - \frac {5}{6}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.46, size = 26, normalized size = 1.08 \begin {gather*} -{\mathrm {e}}^{{\mathrm {e}}^x-\frac {5}{6}}\,\left (30\,x+6\,{\mathrm {e}}^{2\,x}-30\,{\mathrm {e}}^x-6\,x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 29, normalized size = 1.21 \begin {gather*} \frac {\left (6 x^{2} - 30 x - 6 e^{2 x} + 30 e^{x}\right ) e^{e^{x}}}{e^{\frac {5}{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________