Optimal. Leaf size=35 \[ x-\frac {3 \left (2+x+\frac {1}{2} (i \pi +\log (-\log (\log (2))))^2\right )}{4+\log \left (4 x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 55, normalized size of antiderivative = 1.57, number of steps used = 12, number of rules used = 8, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {6741, 6742, 2300, 2178, 2353, 2297, 2302, 30} \begin {gather*} -\frac {3 \left (4-\pi ^2+\log ^2(-\log (\log (2)))+2 i \pi \log (-\log (\log (2)))\right )}{2 \left (\log \left (4 x^2\right )+4\right )}-\frac {3 x}{\log \left (4 x^2\right )+4}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2178
Rule 2297
Rule 2300
Rule 2302
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+5 x \log \left (4 x^2\right )+x \log ^2\left (4 x^2\right )+12 \left (1+\frac {1}{4} (i \pi +\log (-\log (\log (2))))^2\right )}{x \left (4+\log \left (4 x^2\right )\right )^2} \, dx\\ &=\int \left (1-\frac {3}{4+\log \left (4 x^2\right )}+\frac {3 \left (4-\pi ^2+2 x+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))\right )}{x \left (4+\log \left (4 x^2\right )\right )^2}\right ) \, dx\\ &=x-3 \int \frac {1}{4+\log \left (4 x^2\right )} \, dx+3 \int \frac {4-\pi ^2+2 x+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))}{x \left (4+\log \left (4 x^2\right )\right )^2} \, dx\\ &=x+3 \int \left (\frac {2}{\left (4+\log \left (4 x^2\right )\right )^2}+\frac {4-\pi ^2+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))}{x \left (4+\log \left (4 x^2\right )\right )^2}\right ) \, dx-\frac {(3 x) \operatorname {Subst}\left (\int \frac {e^{x/2}}{4+x} \, dx,x,\log \left (4 x^2\right )\right )}{4 \sqrt {x^2}}\\ &=x-\frac {3 x \text {Ei}\left (\frac {1}{2} \left (4+\log \left (4 x^2\right )\right )\right )}{4 e^2 \sqrt {x^2}}+6 \int \frac {1}{\left (4+\log \left (4 x^2\right )\right )^2} \, dx+\left (3 \left (4-\pi ^2+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))\right )\right ) \int \frac {1}{x \left (4+\log \left (4 x^2\right )\right )^2} \, dx\\ &=x-\frac {3 x \text {Ei}\left (\frac {1}{2} \left (4+\log \left (4 x^2\right )\right )\right )}{4 e^2 \sqrt {x^2}}-\frac {3 x}{4+\log \left (4 x^2\right )}+3 \int \frac {1}{4+\log \left (4 x^2\right )} \, dx+\frac {1}{2} \left (3 \left (4-\pi ^2+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,4+\log \left (4 x^2\right )\right )\\ &=x-\frac {3 x \text {Ei}\left (\frac {1}{2} \left (4+\log \left (4 x^2\right )\right )\right )}{4 e^2 \sqrt {x^2}}-\frac {3 x}{4+\log \left (4 x^2\right )}-\frac {3 \left (4-\pi ^2+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))\right )}{2 \left (4+\log \left (4 x^2\right )\right )}+\frac {(3 x) \operatorname {Subst}\left (\int \frac {e^{x/2}}{4+x} \, dx,x,\log \left (4 x^2\right )\right )}{4 \sqrt {x^2}}\\ &=x-\frac {3 x}{4+\log \left (4 x^2\right )}-\frac {3 \left (4-\pi ^2+2 i \pi \log (-\log (\log (2)))+\log ^2(-\log (\log (2)))\right )}{2 \left (4+\log \left (4 x^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 45, normalized size = 1.29 \begin {gather*} x+\frac {3 \left (-4+\pi ^2-2 x-2 i \pi \log (-\log (\log (2)))-\log ^2(-\log (\log (2)))\right )}{2 \left (4+\log \left (4 x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 34, normalized size = 0.97 \begin {gather*} \frac {2 \, x \log \left (4 \, x^{2}\right ) - 3 \, \log \left (\log \left (\log \relax (2)\right )\right )^{2} + 2 \, x - 12}{2 \, {\left (\log \left (4 \, x^{2}\right ) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 0.77 \begin {gather*} x - \frac {3 \, {\left (\log \left (\log \left (\log \relax (2)\right )\right )^{2} + 2 \, x + 4\right )}}{2 \, {\left (2 \, \log \relax (2) + \log \left (x^{2}\right ) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 0.74
method | result | size |
risch | \(x -\frac {3 \left (\ln \left (\ln \left (\ln \relax (2)\right )\right )^{2}+2 x +4\right )}{2 \left (\ln \left (4 x^{2}\right )+4\right )}\) | \(26\) |
norman | \(\frac {x +x \ln \left (4 x^{2}\right )-6-\frac {3 \ln \left (\ln \left (\ln \relax (2)\right )\right )^{2}}{2}}{\ln \left (4 x^{2}\right )+4}\) | \(31\) |
default | \(\frac {x \ln \left (x^{2}\right )+\left (1+2 \ln \relax (2)\right ) x -6}{2 \ln \relax (2)+\ln \left (x^{2}\right )+4}-\frac {3 \ln \left (\ln \left (\ln \relax (2)\right )\right )^{2}}{2 \left (2 \ln \relax (2)+\ln \left (x^{2}\right )+4\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 51, normalized size = 1.46 \begin {gather*} -\frac {3 \, \log \left (\log \left (\log \relax (2)\right )\right )^{2}}{4 \, {\left (\log \relax (2) + \log \relax (x) + 2\right )}} + \frac {x {\left (2 \, \log \relax (2) + 1\right )} + 2 \, x \log \relax (x)}{2 \, {\left (\log \relax (2) + \log \relax (x) + 2\right )}} - \frac {3}{\log \relax (2) + \log \relax (x) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.08, size = 48, normalized size = 1.37 \begin {gather*} \frac {x\,\left (\ln \left (4\,x^2\right )+1\right )}{\ln \left (4\,x^2\right )+4}+\frac {\ln \left (4\,x^2\right )\,\left (\frac {3\,{\ln \left (\ln \left (\ln \relax (2)\right )\right )}^2}{8}+\frac {3}{2}\right )}{\ln \left (4\,x^2\right )+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 49, normalized size = 1.40 \begin {gather*} x + \frac {- 6 x - 12 - 3 \log {\left (- \log {\left (\log {\relax (2 )} \right )} \right )}^{2} + 3 \pi ^{2} - 6 i \pi \log {\left (- \log {\left (\log {\relax (2 )} \right )} \right )}}{2 \log {\left (x^{2} \right )} + 4 \log {\relax (2 )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________