Optimal. Leaf size=35 \[ 1-\frac {3 x}{\log \left (-2+\frac {\left (5+e^x\right )^2}{x}\right ) \left (-x+\frac {\log \left (x^2\right )}{5}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1875 x+e^x \left (750 x-750 x^2\right )+e^{2 x} \left (75 x-150 x^2\right )+\left (-375+e^{2 x} (-15+30 x)+e^x (-150+150 x)\right ) \log \left (x^2\right )+\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (750+300 e^x+30 e^{2 x}-60 x+\left (-375-150 e^x-15 e^{2 x}+30 x\right ) \log \left (x^2\right )\right )}{\log ^2\left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (625 x^2+250 e^x x^2+25 e^{2 x} x^2-50 x^3+\left (-250 x-100 e^x x-10 e^{2 x} x+20 x^2\right ) \log \left (x^2\right )+\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 \left (-\frac {\left (5+e^x\right ) \left (-5+e^x (-1+2 x)\right ) \left (5 x-\log \left (x^2\right )\right )}{25+10 e^x+e^{2 x}-2 x}-\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (-2+\log \left (x^2\right )\right )\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx\\ &=15 \int \frac {-\frac {\left (5+e^x\right ) \left (-5+e^x (-1+2 x)\right ) \left (5 x-\log \left (x^2\right )\right )}{25+10 e^x+e^{2 x}-2 x}-\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx\\ &=15 \int \left (\frac {2 \left (26+5 e^x-2 x\right ) x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}+\frac {5 x-10 x^2+2 \log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right )-\log \left (x^2\right )+2 x \log \left (x^2\right )-\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \log \left (x^2\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=15 \int \frac {5 x-10 x^2+2 \log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right )-\log \left (x^2\right )+2 x \log \left (x^2\right )-\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \log \left (x^2\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx+30 \int \frac {\left (26+5 e^x-2 x\right ) x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx\\ &=15 \int \frac {-\left ((-1+2 x) \left (5 x-\log \left (x^2\right )\right )\right )-\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx+30 \int \left (\frac {26 x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}+\frac {5 e^x x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}+\frac {2 x^2}{\left (-25-10 e^x-e^{2 x}+2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}\right ) \, dx\\ &=15 \int \left (\frac {2-5 x}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2}+\frac {1-2 x+\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}\right ) \, dx+60 \int \frac {x^2}{\left (-25-10 e^x-e^{2 x}+2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+150 \int \frac {e^x x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+780 \int \frac {x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx\\ &=15 \int \frac {2-5 x}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx+15 \int \frac {1-2 x+\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right )}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+60 \int \frac {x^2}{\left (-25-10 e^x-e^{2 x}+2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+150 \int \frac {e^x x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+780 \int \frac {x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx\\ &=15 \int \left (\frac {2}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2}-\frac {5 x}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2}\right ) \, dx+15 \int \left (\frac {1}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}+\frac {1}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )}+\frac {2 x}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (-5 x+\log \left (x^2\right )\right )}\right ) \, dx+60 \int \frac {x^2}{\left (-25-10 e^x-e^{2 x}+2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+150 \int \frac {e^x x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+780 \int \frac {x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx\\ &=15 \int \frac {1}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+15 \int \frac {1}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+30 \int \frac {1}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx+30 \int \frac {x}{\log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (-5 x+\log \left (x^2\right )\right )} \, dx+60 \int \frac {x^2}{\left (-25-10 e^x-e^{2 x}+2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx-75 \int \frac {x}{\log \left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )^2} \, dx+150 \int \frac {e^x x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx+780 \int \frac {x}{\left (25+10 e^x+e^{2 x}-2 x\right ) \log ^2\left (-2+\frac {25}{x}+\frac {10 e^x}{x}+\frac {e^{2 x}}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 37, normalized size = 1.06 \begin {gather*} \frac {15 x}{\log \left (\frac {25+10 e^x+e^{2 x}-2 x}{x}\right ) \left (5 x-\log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 38, normalized size = 1.09 \begin {gather*} \frac {15 \, x}{{\left (5 \, x - \log \left (x^{2}\right )\right )} \log \left (-\frac {2 \, x - e^{\left (2 \, x\right )} - 10 \, e^{x} - 25}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.56, size = 52, normalized size = 1.49 \begin {gather*} -\frac {15 \, x}{5 \, x \log \relax (x) - 2 \, \log \relax (x)^{2} - 5 \, x \log \left (-2 \, x + e^{\left (2 \, x\right )} + 10 \, e^{x} + 25\right ) + 2 \, \log \relax (x) \log \left (-2 \, x + e^{\left (2 \, x\right )} + 10 \, e^{x} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 17.02, size = 279, normalized size = 7.97
method | result | size |
risch | \(\frac {60 i x}{\left (i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+10 x -4 \ln \relax (x )\right ) \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )}{x}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{2 x}}{2}-x +5 \,{\mathrm e}^{x}+\frac {25}{2}\right )}{x}\right )^{3}-2 \pi +2 i \ln \relax (2)-2 i \ln \relax (x )+2 i \ln \left (-\frac {{\mathrm e}^{2 x}}{2}+x -5 \,{\mathrm e}^{x}-\frac {25}{2}\right )\right )}\) | \(279\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 41, normalized size = 1.17 \begin {gather*} -\frac {15 \, x}{5 \, x \log \relax (x) - 2 \, \log \relax (x)^{2} - {\left (5 \, x - 2 \, \log \relax (x)\right )} \log \left (-2 \, x + e^{\left (2 \, x\right )} + 10 \, e^{x} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {1875\,x+{\mathrm {e}}^{2\,x}\,\left (75\,x-150\,x^2\right )+\ln \left (x^2\right )\,\left ({\mathrm {e}}^x\,\left (150\,x-150\right )+{\mathrm {e}}^{2\,x}\,\left (30\,x-15\right )-375\right )+\ln \left (\frac {{\mathrm {e}}^{2\,x}-2\,x+10\,{\mathrm {e}}^x+25}{x}\right )\,\left (30\,{\mathrm {e}}^{2\,x}-60\,x+300\,{\mathrm {e}}^x-\ln \left (x^2\right )\,\left (15\,{\mathrm {e}}^{2\,x}-30\,x+150\,{\mathrm {e}}^x+375\right )+750\right )+{\mathrm {e}}^x\,\left (750\,x-750\,x^2\right )}{{\ln \left (\frac {{\mathrm {e}}^{2\,x}-2\,x+10\,{\mathrm {e}}^x+25}{x}\right )}^2\,\left (250\,x^2\,{\mathrm {e}}^x+25\,x^2\,{\mathrm {e}}^{2\,x}+{\ln \left (x^2\right )}^2\,\left ({\mathrm {e}}^{2\,x}-2\,x+10\,{\mathrm {e}}^x+25\right )+625\,x^2-50\,x^3-\ln \left (x^2\right )\,\left (250\,x+10\,x\,{\mathrm {e}}^{2\,x}+100\,x\,{\mathrm {e}}^x-20\,x^2\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.09, size = 29, normalized size = 0.83 \begin {gather*} \frac {15 x}{\left (5 x - \log {\left (x^{2} \right )}\right ) \log {\left (\frac {- 2 x + e^{2 x} + 10 e^{x} + 25}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________