Optimal. Leaf size=27 \[ \frac {4 x \log (x) \left (7-x-\log \left (\frac {2 x}{2+x^2}\right )\right )}{\log (25)} \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 41, normalized size of antiderivative = 1.52, number of steps used = 28, number of rules used = 12, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.145, Rules used = {12, 6688, 2357, 2295, 2304, 203, 2324, 4848, 2391, 2523, 388, 2556} \begin {gather*} -\frac {4 x^2 \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{x^2+2}\right )}{\log (25)}+\frac {28 x \log (x)}{\log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 203
Rule 388
Rule 2295
Rule 2304
Rule 2324
Rule 2357
Rule 2391
Rule 2523
Rule 2556
Rule 4848
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {56-8 x+28 x^2-4 x^3+\left (-8-4 x^2\right ) \log \left (\frac {2 x}{2+x^2}\right )+\log (x) \left (48-16 x+32 x^2-8 x^3+\left (-8-4 x^2\right ) \log \left (\frac {2 x}{2+x^2}\right )\right )}{2+x^2} \, dx}{\log (25)}\\ &=\frac {\int \left (-\frac {8 \left (-6+2 x-4 x^2+x^3\right ) \log (x)}{2+x^2}-4 \log (x) \log \left (\frac {2 x}{2+x^2}\right )-4 \left (-7+x+\log \left (\frac {2 x}{2+x^2}\right )\right )\right ) \, dx}{\log (25)}\\ &=-\frac {4 \int \log (x) \log \left (\frac {2 x}{2+x^2}\right ) \, dx}{\log (25)}-\frac {4 \int \left (-7+x+\log \left (\frac {2 x}{2+x^2}\right )\right ) \, dx}{\log (25)}-\frac {8 \int \frac {\left (-6+2 x-4 x^2+x^3\right ) \log (x)}{2+x^2} \, dx}{\log (25)}\\ &=\frac {28 x}{\log (25)}-\frac {2 x^2}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}+\frac {4 \int \frac {\left (2-x^2\right ) \log (x)}{2+x^2} \, dx}{\log (25)}-\frac {8 \int \left (-4 \log (x)+x \log (x)+\frac {2 \log (x)}{2+x^2}\right ) \, dx}{\log (25)}\\ &=\frac {28 x}{\log (25)}-\frac {2 x^2}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}+\frac {4 \int \left (-\log (x)+\frac {4 \log (x)}{2+x^2}\right ) \, dx}{\log (25)}-\frac {8 \int x \log (x) \, dx}{\log (25)}-\frac {16 \int \frac {\log (x)}{2+x^2} \, dx}{\log (25)}+\frac {32 \int \log (x) \, dx}{\log (25)}\\ &=-\frac {4 x}{\log (25)}+\frac {32 x \log (x)}{\log (25)}-\frac {4 x^2 \log (x)}{\log (25)}-\frac {8 \sqrt {2} \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right ) \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}-\frac {4 \int \log (x) \, dx}{\log (25)}+\frac {16 \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )}{\sqrt {2} x} \, dx}{\log (25)}+\frac {16 \int \frac {\log (x)}{2+x^2} \, dx}{\log (25)}\\ &=\frac {28 x \log (x)}{\log (25)}-\frac {4 x^2 \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}-\frac {16 \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )}{\sqrt {2} x} \, dx}{\log (25)}+\frac {\left (8 \sqrt {2}\right ) \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}\\ &=\frac {28 x \log (x)}{\log (25)}-\frac {4 x^2 \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}+\frac {\left (4 i \sqrt {2}\right ) \int \frac {\log \left (1-\frac {i x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}-\frac {\left (4 i \sqrt {2}\right ) \int \frac {\log \left (1+\frac {i x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}-\frac {\left (8 \sqrt {2}\right ) \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}\\ &=\frac {28 x \log (x)}{\log (25)}-\frac {4 x^2 \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}+\frac {4 i \sqrt {2} \text {Li}_2\left (-\frac {i x}{\sqrt {2}}\right )}{\log (25)}-\frac {4 i \sqrt {2} \text {Li}_2\left (\frac {i x}{\sqrt {2}}\right )}{\log (25)}-\frac {\left (4 i \sqrt {2}\right ) \int \frac {\log \left (1-\frac {i x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}+\frac {\left (4 i \sqrt {2}\right ) \int \frac {\log \left (1+\frac {i x}{\sqrt {2}}\right )}{x} \, dx}{\log (25)}\\ &=\frac {28 x \log (x)}{\log (25)}-\frac {4 x^2 \log (x)}{\log (25)}-\frac {4 x \log (x) \log \left (\frac {2 x}{2+x^2}\right )}{\log (25)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 0.85 \begin {gather*} -\frac {4 x \log (x) \left (-7+x+\log \left (\frac {2 x}{2+x^2}\right )\right )}{\log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 28, normalized size = 1.04 \begin {gather*} -\frac {2 \, {\left (x^{2} + x \log \left (\frac {2 \, x}{x^{2} + 2}\right ) - 7 \, x\right )} \log \relax (x)}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 38, normalized size = 1.41 \begin {gather*} \frac {2 \, {\left (x \log \left (x^{2} + 2\right ) \log \relax (x) - x \log \relax (x)^{2} - {\left (x^{2} + x {\left (\log \relax (2) - 7\right )}\right )} \log \relax (x)\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 189, normalized size = 7.00
method | result | size |
risch | \(\frac {2 \ln \relax (x ) x \ln \left (x^{2}+2\right )}{\ln \relax (5)}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}+2}\right ) \mathrm {csgn}\left (\frac {i x}{x^{2}+2}\right )^{2} \ln \relax (x )}{\ln \relax (5)}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}+2}\right ) \mathrm {csgn}\left (\frac {i x}{x^{2}+2}\right ) \mathrm {csgn}\left (i x \right ) \ln \relax (x )}{\ln \relax (5)}-\frac {i \pi x \mathrm {csgn}\left (\frac {i x}{x^{2}+2}\right )^{2} \mathrm {csgn}\left (i x \right ) \ln \relax (x )}{\ln \relax (5)}+\frac {i \pi x \mathrm {csgn}\left (\frac {i x}{x^{2}+2}\right )^{3} \ln \relax (x )}{\ln \relax (5)}-\frac {2 x \ln \relax (2) \ln \relax (x )}{\ln \relax (5)}-\frac {2 x^{2} \ln \relax (x )}{\ln \relax (5)}-\frac {2 x \ln \relax (x )^{2}}{\ln \relax (5)}+\frac {14 x \ln \relax (x )}{\ln \relax (5)}\) | \(189\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 38, normalized size = 1.41 \begin {gather*} \frac {2 \, {\left (x \log \left (x^{2} + 2\right ) \log \relax (x) - x \log \relax (x)^{2} - {\left (x^{2} + x {\left (\log \relax (2) - 7\right )}\right )} \log \relax (x)\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {4\,x+\frac {\ln \relax (x)\,\left (16\,x+\ln \left (\frac {2\,x}{x^2+2}\right )\,\left (4\,x^2+8\right )-32\,x^2+8\,x^3-48\right )}{2}+\frac {\ln \left (\frac {2\,x}{x^2+2}\right )\,\left (4\,x^2+8\right )}{2}-14\,x^2+2\,x^3-28}{\ln \relax (5)\,\left (x^2+2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 34, normalized size = 1.26 \begin {gather*} - \frac {2 x \log {\relax (x )} \log {\left (\frac {2 x}{x^{2} + 2} \right )}}{\log {\relax (5 )}} + \frac {\left (- 2 x^{2} + 14 x\right ) \log {\relax (x )}}{\log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________