Optimal. Leaf size=24 \[ \frac {18 \left (2+\frac {1}{16} \left (-3+x+\log ^2\left (2+e^{15+x}\right )\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-522-261 e^{15+x}+18 e^{15+x} x \log \left (2+e^{15+x}\right )+\left (-18-9 e^{15+x}\right ) \log ^2\left (2+e^{15+x}\right )}{16 x^2+8 e^{15+x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \left (-29+\frac {2 e^{15+x} x \log \left (2+e^{15+x}\right )}{2+e^{15+x}}-\log ^2\left (2+e^{15+x}\right )\right )}{8 x^2} \, dx\\ &=\frac {9}{8} \int \frac {-29+\frac {2 e^{15+x} x \log \left (2+e^{15+x}\right )}{2+e^{15+x}}-\log ^2\left (2+e^{15+x}\right )}{x^2} \, dx\\ &=\frac {9}{8} \int \left (-\frac {4 \log \left (2+e^{15+x}\right )}{\left (2+e^{15+x}\right ) x}+\frac {-29+2 x \log \left (2+e^{15+x}\right )-\log ^2\left (2+e^{15+x}\right )}{x^2}\right ) \, dx\\ &=\frac {9}{8} \int \frac {-29+2 x \log \left (2+e^{15+x}\right )-\log ^2\left (2+e^{15+x}\right )}{x^2} \, dx-\frac {9}{2} \int \frac {\log \left (2+e^{15+x}\right )}{\left (2+e^{15+x}\right ) x} \, dx\\ &=\frac {9}{8} \int \left (-\frac {29}{x^2}+\frac {2 \log \left (2+e^{15+x}\right )}{x}-\frac {\log ^2\left (2+e^{15+x}\right )}{x^2}\right ) \, dx+\frac {9}{2} \int \frac {e^{15+x} \int \frac {1}{2 x+e^{15+x} x} \, dx}{2+e^{15+x}} \, dx-\frac {1}{2} \left (9 \log \left (2+e^{15+x}\right )\right ) \int \frac {1}{\left (2+e^{15+x}\right ) x} \, dx\\ &=\frac {261}{8 x}-\frac {9}{8} \int \frac {\log ^2\left (2+e^{15+x}\right )}{x^2} \, dx+\frac {9}{4} \int \frac {\log \left (2+e^{15+x}\right )}{x} \, dx+\frac {9}{2} \int \frac {e^{15+x} \int \frac {1}{2 x+e^{15+x} x} \, dx}{2+e^{15+x}} \, dx-\frac {1}{2} \left (9 \log \left (2+e^{15+x}\right )\right ) \int \frac {1}{\left (2+e^{15+x}\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 1.00 \begin {gather*} \frac {9}{8} \left (\frac {29}{x}+\frac {\log ^2\left (2+e^{15+x}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 16, normalized size = 0.67 \begin {gather*} \frac {9 \, {\left (\log \left (e^{\left (x + 15\right )} + 2\right )^{2} + 29\right )}}{8 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 16, normalized size = 0.67 \begin {gather*} \frac {9 \, {\left (\log \left (e^{\left (x + 15\right )} + 2\right )^{2} + 29\right )}}{8 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.75
method | result | size |
norman | \(\frac {\frac {261}{8}+\frac {9 \ln \left ({\mathrm e}^{x +15}+2\right )^{2}}{8}}{x}\) | \(18\) |
risch | \(\frac {9 \ln \left ({\mathrm e}^{x +15}+2\right )^{2}}{8 x}+\frac {261}{8 x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 16, normalized size = 0.67 \begin {gather*} \frac {9 \, {\left (\log \left (e^{\left (x + 15\right )} + 2\right )^{2} + 29\right )}}{8 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 17, normalized size = 0.71 \begin {gather*} \frac {9\,\left ({\ln \left ({\mathrm {e}}^{15}\,{\mathrm {e}}^x+2\right )}^2+29\right )}{8\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.79 \begin {gather*} \frac {9 \log {\left (e^{x + 15} + 2 \right )}^{2}}{8 x} + \frac {261}{8 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________