Optimal. Leaf size=24 \[ 1+e^{e^{\frac {4}{9} x \left (-e^8+x\right )^2} (3+x)} \]
________________________________________________________________________________________
Rubi [F] time = 6.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{9} \exp \left (e^{\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )} (3+x)+\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )\right ) \left (9+36 x^2+12 x^3+e^{16} (12+4 x)+e^8 \left (-48 x-16 x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \exp \left (e^{\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )} (3+x)+\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )\right ) \left (9+36 x^2+12 x^3+e^{16} (12+4 x)+e^8 \left (-48 x-16 x^2\right )\right ) \, dx\\ &=\frac {1}{9} \int \exp \left (e^{\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )} (3+x)+\frac {1}{9} \left (4 e^{16} x-8 e^8 x^2+4 x^3\right )\right ) \left (3 \left (3+4 e^{16}\right )-4 e^8 \left (12-e^8\right ) x+4 \left (9-4 e^8\right ) x^2+12 x^3\right ) \, dx\\ &=\frac {1}{9} \int \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) \left (3 \left (3+4 e^{16}\right )-4 e^8 \left (12-e^8\right ) x+4 \left (9-4 e^8\right ) x^2+12 x^3\right ) \, dx\\ &=\frac {1}{9} \int \left (3 \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) \left (3+4 e^{16}\right )+4 \exp \left (8+\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) \left (-12+e^8\right ) x-4 \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) \left (-9+4 e^8\right ) x^2+12 \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) x^3\right ) \, dx\\ &=\frac {4}{3} \int \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) x^3 \, dx+\frac {1}{9} \left (4 \left (9-4 e^8\right )\right ) \int \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) x^2 \, dx-\frac {1}{9} \left (4 \left (12-e^8\right )\right ) \int \exp \left (8+\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) x \, dx+\frac {1}{3} \left (3+4 e^{16}\right ) \int \exp \left (\frac {4}{9} \left (e^8-x\right )^2 x+e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.14, size = 22, normalized size = 0.92 \begin {gather*} e^{e^{\frac {4}{9} \left (e^8-x\right )^2 x} (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 24, normalized size = 1.00 \begin {gather*} e^{\left ({\left (x + 3\right )} e^{\left (\frac {4}{9} \, x^{3} - \frac {8}{9} \, x^{2} e^{8} + \frac {4}{9} \, x e^{16}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{9} \, {\left (12 \, x^{3} + 36 \, x^{2} + 4 \, {\left (x + 3\right )} e^{16} - 16 \, {\left (x^{2} + 3 \, x\right )} e^{8} + 9\right )} e^{\left (\frac {4}{9} \, x^{3} - \frac {8}{9} \, x^{2} e^{8} + \frac {4}{9} \, x e^{16} + {\left (x + 3\right )} e^{\left (\frac {4}{9} \, x^{3} - \frac {8}{9} \, x^{2} e^{8} + \frac {4}{9} \, x e^{16}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 21, normalized size = 0.88
method | result | size |
risch | \({\mathrm e}^{\left (3+x \right ) {\mathrm e}^{\frac {4 x \left (-2 x \,{\mathrm e}^{8}+x^{2}+{\mathrm e}^{16}\right )}{9}}}\) | \(21\) |
norman | \({\mathrm e}^{\left (3+x \right ) {\mathrm e}^{\frac {4 x \,{\mathrm e}^{16}}{9}-\frac {8 x^{2} {\mathrm e}^{8}}{9}+\frac {4 x^{3}}{9}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 44, normalized size = 1.83 \begin {gather*} e^{\left (x e^{\left (\frac {4}{9} \, x^{3} - \frac {8}{9} \, x^{2} e^{8} + \frac {4}{9} \, x e^{16}\right )} + 3 \, e^{\left (\frac {4}{9} \, x^{3} - \frac {8}{9} \, x^{2} e^{8} + \frac {4}{9} \, x e^{16}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.42, size = 47, normalized size = 1.96 \begin {gather*} {\mathrm {e}}^{3\,{\mathrm {e}}^{-\frac {8\,x^2\,{\mathrm {e}}^8}{9}}\,{\mathrm {e}}^{\frac {4\,x^3}{9}}\,{\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^{16}}{9}}}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {8\,x^2\,{\mathrm {e}}^8}{9}}\,{\mathrm {e}}^{\frac {4\,x^3}{9}}\,{\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^{16}}{9}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 31, normalized size = 1.29 \begin {gather*} e^{\left (x + 3\right ) e^{\frac {4 x^{3}}{9} - \frac {8 x^{2} e^{8}}{9} + \frac {4 x e^{16}}{9}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________