Optimal. Leaf size=26 \[ \left (5-e^{5-e^x (3-4 x) \log (x)}\right ) (-e+x) \]
________________________________________________________________________________________
Rubi [F] time = 1.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x+e^{5+e^x (-3+4 x) \log (x)} \left (-x+e^x \left (3 x-4 x^2+e (-3+4 x)\right )+e^x \left (-x^2-4 x^3+e \left (x+4 x^2\right )\right ) \log (x)\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5+e^5 x^{-1+e^x (-3+4 x)} \left (-3 e^{1+x}-x+3 e^x \left (1+\frac {4 e}{3}\right ) x-4 e^x x^2+e^{1+x} x \log (x)-(1-4 e) e^x x^2 \log (x)-4 e^x x^3 \log (x)\right )\right ) \, dx\\ &=5 x+e^5 \int x^{-1+e^x (-3+4 x)} \left (-3 e^{1+x}-x+3 e^x \left (1+\frac {4 e}{3}\right ) x-4 e^x x^2+e^{1+x} x \log (x)-(1-4 e) e^x x^2 \log (x)-4 e^x x^3 \log (x)\right ) \, dx\\ &=5 x+e^5 \int x^{-1+e^x (-3+4 x)} \left (-x+e^{1+x} (-3+4 x)-e^x x (-3+4 x)+e^x (e-x) x (1+4 x) \log (x)\right ) \, dx\\ &=5 x+e^5 \int \left (-x^{e^x (-3+4 x)}-e^x x^{e^x (-3+4 x)} (-3+4 x)+e^{1+x} x^{-1+e^x (-3+4 x)} (-3+4 x)+e^x (e-x) x^{e^x (-3+4 x)} (1+4 x) \log (x)\right ) \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx-e^5 \int e^x x^{e^x (-3+4 x)} (-3+4 x) \, dx+e^5 \int e^{1+x} x^{-1+e^x (-3+4 x)} (-3+4 x) \, dx+e^5 \int e^x (e-x) x^{e^x (-3+4 x)} (1+4 x) \log (x) \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx+e^5 \int \left (4 e^{1+x} x^{e^x (-3+4 x)}-3 e^{1+x} x^{-1+e^x (-3+4 x)}\right ) \, dx-e^5 \int \left (-3 e^x x^{e^x (-3+4 x)}+4 e^x x^{1+e^x (-3+4 x)}\right ) \, dx-e^5 \int \frac {\int e^{1+x} x^{e^x (-3+4 x)} \, dx+(-1+4 e) \int e^x x^{1+e^x (-3+4 x)} \, dx-4 \int e^x x^{2+e^x (-3+4 x)} \, dx}{x} \, dx+\left (e^5 \log (x)\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5 \log (x)\right ) \int e^x x^{2+e^x (-3+4 x)} \, dx-\left ((1-4 e) e^5 \log (x)\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx-e^5 \int \left (\frac {\int e^{1+x} x^{e^x (-3+4 x)} \, dx-(1-4 e) \int e^x x^{1+e^x (-3+4 x)} \, dx}{x}-\frac {4 \int e^x x^{2+e^x (-3+4 x)} \, dx}{x}\right ) \, dx+\left (3 e^5\right ) \int e^x x^{e^x (-3+4 x)} \, dx-\left (3 e^5\right ) \int e^{1+x} x^{-1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx+\left (e^5 \log (x)\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5 \log (x)\right ) \int e^x x^{2+e^x (-3+4 x)} \, dx-\left ((1-4 e) e^5 \log (x)\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx-e^5 \int \frac {\int e^{1+x} x^{e^x (-3+4 x)} \, dx-(1-4 e) \int e^x x^{1+e^x (-3+4 x)} \, dx}{x} \, dx+\left (3 e^5\right ) \int e^x x^{e^x (-3+4 x)} \, dx-\left (3 e^5\right ) \int e^{1+x} x^{-1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int \frac {\int e^x x^{2+e^x (-3+4 x)} \, dx}{x} \, dx+\left (e^5 \log (x)\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5 \log (x)\right ) \int e^x x^{2+e^x (-3+4 x)} \, dx-\left ((1-4 e) e^5 \log (x)\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx-e^5 \int \left (\frac {\int e^{1+x} x^{e^x (-3+4 x)} \, dx}{x}+\frac {(-1+4 e) \int e^x x^{1+e^x (-3+4 x)} \, dx}{x}\right ) \, dx+\left (3 e^5\right ) \int e^x x^{e^x (-3+4 x)} \, dx-\left (3 e^5\right ) \int e^{1+x} x^{-1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int \frac {\int e^x x^{2+e^x (-3+4 x)} \, dx}{x} \, dx+\left (e^5 \log (x)\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5 \log (x)\right ) \int e^x x^{2+e^x (-3+4 x)} \, dx-\left ((1-4 e) e^5 \log (x)\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx\\ &=5 x-e^5 \int x^{e^x (-3+4 x)} \, dx-e^5 \int \frac {\int e^{1+x} x^{e^x (-3+4 x)} \, dx}{x} \, dx+\left (3 e^5\right ) \int e^x x^{e^x (-3+4 x)} \, dx-\left (3 e^5\right ) \int e^{1+x} x^{-1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx+\left (4 e^5\right ) \int \frac {\int e^x x^{2+e^x (-3+4 x)} \, dx}{x} \, dx+\left ((1-4 e) e^5\right ) \int \frac {\int e^x x^{1+e^x (-3+4 x)} \, dx}{x} \, dx+\left (e^5 \log (x)\right ) \int e^{1+x} x^{e^x (-3+4 x)} \, dx-\left (4 e^5 \log (x)\right ) \int e^x x^{2+e^x (-3+4 x)} \, dx-\left ((1-4 e) e^5 \log (x)\right ) \int e^x x^{1+e^x (-3+4 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.82, size = 40, normalized size = 1.54 \begin {gather*} 5 x+\frac {e^5 (e-x) x^{1+e^x (-3+4 x)} (1+4 x)}{x+4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 25, normalized size = 0.96 \begin {gather*} -{\left (x - e\right )} e^{\left ({\left (4 \, x - 3\right )} e^{x} \log \relax (x) + 5\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (4 \, x^{3} + x^{2} - {\left (4 \, x^{2} + x\right )} e\right )} e^{x} \log \relax (x) + {\left (4 \, x^{2} - {\left (4 \, x - 3\right )} e - 3 \, x\right )} e^{x} + x\right )} e^{\left ({\left (4 \, x - 3\right )} e^{x} \log \relax (x) + 5\right )} - 5 \, x}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.92
method | result | size |
risch | \(5 x +\left ({\mathrm e}-x \right ) x^{\left (4 x -3\right ) {\mathrm e}^{x}} {\mathrm e}^{5}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.15 \begin {gather*} -{\left (x e^{5} - e^{6}\right )} e^{\left (4 \, x e^{x} \log \relax (x) - 3 \, e^{x} \log \relax (x)\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 29, normalized size = 1.12 \begin {gather*} 5\,x-\frac {x^{4\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^5\,\left (x-\mathrm {e}\right )}{x^{3\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 38.06, size = 22, normalized size = 0.85 \begin {gather*} 5 x + \left (e - x\right ) e^{\left (4 x - 3\right ) e^{x} \log {\relax (x )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________