Optimal. Leaf size=30 \[ \frac {1}{16} \left (5+e^{4+\frac {2}{x (1+x)}}-x+x (4+x)\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 \left (2+4 x+4 x^2\right )}{x+x^2}} (-2-4 x)+15 x^2+49 x^3+62 x^4+39 x^5+13 x^6+2 x^7+e^{\frac {2+4 x+4 x^2}{x+x^2}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{8 x^2+16 x^3+8 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {2 \left (2+4 x+4 x^2\right )}{x+x^2}} (-2-4 x)+15 x^2+49 x^3+62 x^4+39 x^5+13 x^6+2 x^7+e^{\frac {2+4 x+4 x^2}{x+x^2}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{x^2 \left (8+16 x+8 x^2\right )} \, dx\\ &=\int \frac {e^{\frac {2 \left (2+4 x+4 x^2\right )}{x+x^2}} (-2-4 x)+15 x^2+49 x^3+62 x^4+39 x^5+13 x^6+2 x^7+e^{\frac {2+4 x+4 x^2}{x+x^2}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{8 x^2 (1+x)^2} \, dx\\ &=\frac {1}{8} \int \frac {e^{\frac {2 \left (2+4 x+4 x^2\right )}{x+x^2}} (-2-4 x)+15 x^2+49 x^3+62 x^4+39 x^5+13 x^6+2 x^7+e^{\frac {2+4 x+4 x^2}{x+x^2}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{8} \int \left (\frac {15}{(1+x)^2}+\frac {2 e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}} (-1-2 x)}{x^2 (1+x)^2}+\frac {49 x}{(1+x)^2}+\frac {62 x^2}{(1+x)^2}+\frac {39 x^3}{(1+x)^2}+\frac {13 x^4}{(1+x)^2}+\frac {2 x^5}{(1+x)^2}+\frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{x^2 (1+x)^2}\right ) \, dx\\ &=-\frac {15}{8 (1+x)}+\frac {1}{8} \int \frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}} \left (-10-26 x-11 x^2+4 x^3+7 x^4+2 x^5\right )}{x^2 (1+x)^2} \, dx+\frac {1}{4} \int \frac {e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}} (-1-2 x)}{x^2 (1+x)^2} \, dx+\frac {1}{4} \int \frac {x^5}{(1+x)^2} \, dx+\frac {13}{8} \int \frac {x^4}{(1+x)^2} \, dx+\frac {39}{8} \int \frac {x^3}{(1+x)^2} \, dx+\frac {49}{8} \int \frac {x}{(1+x)^2} \, dx+\frac {31}{4} \int \frac {x^2}{(1+x)^2} \, dx\\ &=-\frac {15}{8 (1+x)}+\frac {1}{8} \int \left (3 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}-\frac {10 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x^2}-\frac {6 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x}+2 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}} x+\frac {6 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{(1+x)^2}+\frac {2 e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{1+x}\right ) \, dx+\frac {1}{4} \int \left (-\frac {e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x^2}+\frac {e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{(1+x)^2}\right ) \, dx+\frac {1}{4} \int \left (-4+3 x-2 x^2+x^3-\frac {1}{(1+x)^2}+\frac {5}{1+x}\right ) \, dx+\frac {13}{8} \int \left (3-2 x+x^2+\frac {1}{(1+x)^2}-\frac {4}{1+x}\right ) \, dx+\frac {39}{8} \int \left (-2+x-\frac {1}{(1+x)^2}+\frac {3}{1+x}\right ) \, dx+\frac {49}{8} \int \left (-\frac {1}{(1+x)^2}+\frac {1}{1+x}\right ) \, dx+\frac {31}{4} \int \left (1+\frac {1}{(1+x)^2}-\frac {2}{1+x}\right ) \, dx\\ &=\frac {15 x}{8}+\frac {19 x^2}{16}+\frac {3 x^3}{8}+\frac {x^4}{16}-\frac {1}{4} \int \frac {e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x^2} \, dx+\frac {1}{4} \int e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}} x \, dx+\frac {1}{4} \int \frac {e^{\frac {4 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{(1+x)^2} \, dx+\frac {1}{4} \int \frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{1+x} \, dx+\frac {3}{8} \int e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}} \, dx-\frac {3}{4} \int \frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x} \, dx+\frac {3}{4} \int \frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{(1+x)^2} \, dx-\frac {5}{4} \int \frac {e^{\frac {2 \left (1+2 x+2 x^2\right )}{x (1+x)}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 71, normalized size = 2.37 \begin {gather*} \frac {1}{16} e^{-\frac {4}{1+x}} \left (e^{8+\frac {4}{x}}+2 e^{2 \left (2+\frac {1}{x}+\frac {1}{1+x}\right )} \left (5+3 x+x^2\right )+e^{\frac {4}{1+x}} x \left (30+19 x+6 x^2+x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 71, normalized size = 2.37 \begin {gather*} \frac {1}{16} \, x^{4} + \frac {3}{8} \, x^{3} + \frac {19}{16} \, x^{2} + \frac {1}{8} \, {\left (x^{2} + 3 \, x + 5\right )} e^{\left (\frac {2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )}}{x^{2} + x}\right )} + \frac {15}{8} \, x + \frac {1}{16} \, e^{\left (\frac {4 \, {\left (2 \, x^{2} + 2 \, x + 1\right )}}{x^{2} + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 124, normalized size = 4.13 \begin {gather*} \frac {1}{16} \, x^{4} + \frac {3}{8} \, x^{3} + \frac {1}{8} \, x^{2} e^{\left (\frac {2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )}}{x^{2} + x}\right )} + \frac {19}{16} \, x^{2} + \frac {3}{8} \, x e^{\left (\frac {2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )}}{x^{2} + x}\right )} + \frac {15}{8} \, x + \frac {1}{16} \, e^{\left (\frac {8 \, x^{2}}{x^{2} + x} + \frac {8 \, x}{x^{2} + x} + \frac {4}{x^{2} + x}\right )} + \frac {5}{8} \, e^{\left (\frac {2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )}}{x^{2} + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 75, normalized size = 2.50
method | result | size |
risch | \(\frac {15 x}{8}+\frac {19 x^{2}}{16}+\frac {3 x^{3}}{8}+\frac {x^{4}}{16}+\frac {{\mathrm e}^{\frac {8 x^{2}+8 x +4}{\left (x +1\right ) x}}}{16}+\left (\frac {5}{8}+\frac {3}{8} x +\frac {1}{8} x^{2}\right ) {\mathrm e}^{\frac {4 x^{2}+4 x +2}{\left (x +1\right ) x}}\) | \(75\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {4 x^{2}+4 x +2}{x^{2}+x}}-\frac {15 x}{8}+\frac {49 x^{3}}{16}+\frac {25 x^{4}}{16}+\frac {7 x^{5}}{16}+\frac {x^{6}}{16}+\frac {5 x \,{\mathrm e}^{\frac {4 x^{2}+4 x +2}{x^{2}+x}}}{8}+\frac {x \,{\mathrm e}^{\frac {8 x^{2}+8 x +4}{x^{2}+x}}}{16}+\frac {x^{2} {\mathrm e}^{\frac {8 x^{2}+8 x +4}{x^{2}+x}}}{16}+\frac {x^{3} {\mathrm e}^{\frac {4 x^{2}+4 x +2}{x^{2}+x}}}{2}+\frac {x^{4} {\mathrm e}^{\frac {4 x^{2}+4 x +2}{x^{2}+x}}}{8}}{\left (x +1\right ) x}\) | \(177\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{16} \, x^{4} + \frac {3}{8} \, x^{3} + \frac {19}{16} \, x^{2} + \frac {15}{8} \, x + \frac {1}{16} \, e^{\left (-\frac {4}{x + 1} + \frac {4}{x} + 8\right )} + \frac {1}{8} \, \int \frac {{\left (2 \, x^{5} e^{4} + 7 \, x^{4} e^{4} + 4 \, x^{3} e^{4} - 11 \, x^{2} e^{4} - 26 \, x e^{4} - 10 \, e^{4}\right )} e^{\left (-\frac {2}{x + 1} + \frac {2}{x}\right )}}{x^{4} + 2 \, x^{3} + x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.15, size = 161, normalized size = 5.37 \begin {gather*} \frac {5\,{\mathrm {e}}^{\frac {2}{x^2+x}+\frac {4\,x^2}{x^2+x}+\frac {4\,x}{x^2+x}}}{8}+\frac {{\mathrm {e}}^{\frac {4}{x^2+x}+\frac {8\,x^2}{x^2+x}+\frac {8\,x}{x^2+x}}}{16}+x^2\,\left (\frac {{\mathrm {e}}^{\frac {2}{x^2+x}+\frac {4\,x^2}{x^2+x}+\frac {4\,x}{x^2+x}}}{8}+\frac {19}{16}\right )+\frac {3\,x^3}{8}+\frac {x^4}{16}+x\,\left (\frac {3\,{\mathrm {e}}^{\frac {2}{x^2+x}+\frac {4\,x^2}{x^2+x}+\frac {4\,x}{x^2+x}}}{8}+\frac {15}{8}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 70, normalized size = 2.33 \begin {gather*} \frac {x^{4}}{16} + \frac {3 x^{3}}{8} + \frac {19 x^{2}}{16} + \frac {15 x}{8} + \frac {\left (16 x^{2} + 48 x + 80\right ) e^{\frac {4 x^{2} + 4 x + 2}{x^{2} + x}}}{128} + \frac {e^{\frac {2 \left (4 x^{2} + 4 x + 2\right )}{x^{2} + x}}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________