Optimal. Leaf size=35 \[ -4-x+\frac {3 \left (x-x^4\right )}{x}-\log \left (\frac {e^{2 x}}{x^2}-x+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+x^3+x^4+9 x^6+e^{2 x} \left (2-3 x-9 x^3\right )+\left (-x^3-9 x^5\right ) \log (x)}{e^{2 x} x-x^4+x^3 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2-3 x-9 x^3}{x}+\frac {(-1+x) x (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)}\right ) \, dx\\ &=\int \frac {2-3 x-9 x^3}{x} \, dx+\int \frac {(-1+x) x (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)} \, dx\\ &=\int \left (-3+\frac {2}{x}-9 x^2\right ) \, dx+\int \left (-\frac {x (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)}+\frac {x^2 (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)}\right ) \, dx\\ &=-3 x-3 x^3+2 \log (x)-\int \frac {x (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)} \, dx+\int \frac {x^2 (-1+2 x-2 \log (x))}{-e^{2 x}+x^3-x^2 \log (x)} \, dx\\ &=-3 x-3 x^3+2 \log (x)-\int \left (-\frac {x}{-e^{2 x}+x^3-x^2 \log (x)}+\frac {2 x^2}{-e^{2 x}+x^3-x^2 \log (x)}-\frac {2 x \log (x)}{-e^{2 x}+x^3-x^2 \log (x)}\right ) \, dx+\int \left (-\frac {x^2}{-e^{2 x}+x^3-x^2 \log (x)}+\frac {2 x^3}{-e^{2 x}+x^3-x^2 \log (x)}-\frac {2 x^2 \log (x)}{-e^{2 x}+x^3-x^2 \log (x)}\right ) \, dx\\ &=-3 x-3 x^3+2 \log (x)-2 \int \frac {x^2}{-e^{2 x}+x^3-x^2 \log (x)} \, dx+2 \int \frac {x^3}{-e^{2 x}+x^3-x^2 \log (x)} \, dx+2 \int \frac {x \log (x)}{-e^{2 x}+x^3-x^2 \log (x)} \, dx-2 \int \frac {x^2 \log (x)}{-e^{2 x}+x^3-x^2 \log (x)} \, dx+\int \frac {x}{-e^{2 x}+x^3-x^2 \log (x)} \, dx-\int \frac {x^2}{-e^{2 x}+x^3-x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 33, normalized size = 0.94 \begin {gather*} -x-3 x^3+2 \log (x)-\log \left (e^{2 x}-x^3+x^2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 34, normalized size = 0.97 \begin {gather*} -3 \, x^{3} - x - \log \left (-\frac {x^{3} - x^{2} \log \relax (x) - e^{\left (2 \, x\right )}}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 32, normalized size = 0.91 \begin {gather*} -3 \, x^{3} - x - \log \left (-x^{3} + x^{2} \log \relax (x) + e^{\left (2 \, x\right )}\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 0.89
method | result | size |
risch | \(-3 x^{3}-x -\ln \left (\ln \relax (x )-\frac {x^{3}-{\mathrm e}^{2 x}}{x^{2}}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 32, normalized size = 0.91 \begin {gather*} -3 \, x^{3} - x - \log \left (-x^{3} + x^{2} \log \relax (x) + e^{\left (2 \, x\right )}\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.65, size = 32, normalized size = 0.91 \begin {gather*} -x-\ln \left (\frac {{\mathrm {e}}^{2\,x}+x^2\,\ln \relax (x)-x^3}{x^2}\right )-3\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 27, normalized size = 0.77 \begin {gather*} - 3 x^{3} - x + 2 \log {\relax (x )} - \log {\left (- x^{3} + x^{2} \log {\relax (x )} + e^{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________