Optimal. Leaf size=27 \[ 2 x+2 \left (-e^x-e^{x-4 e^{25} x}+2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 0.81, number of steps used = 4, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2194, 2227} \begin {gather*} 6 x-2 e^x-2 e^{\left (1-4 e^{25}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=6 x-2 \int e^x \, dx-\left (2 \left (1-4 e^{25}\right )\right ) \int e^{x-4 e^{25} x} \, dx\\ &=-2 e^x+6 x-\left (2 \left (1-4 e^{25}\right )\right ) \int e^{\left (1-4 e^{25}\right ) x} \, dx\\ &=-2 e^x-2 e^{\left (1-4 e^{25}\right ) x}+6 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.70 \begin {gather*} -2 \left (e^x+e^{x-4 e^{25} x}-3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 18, normalized size = 0.67 \begin {gather*} 6 \, x - 2 \, e^{\left (-4 \, x e^{25} + x\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.67 \begin {gather*} 6 \, x - 2 \, e^{\left (-4 \, x e^{25} + x\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.70
method | result | size |
norman | \(6 x -2 \,{\mathrm e}^{x}-2 \,{\mathrm e}^{-4 x \,{\mathrm e}^{25}+x}\) | \(19\) |
risch | \(6 x -2 \,{\mathrm e}^{x}-2 \,{\mathrm e}^{-x \left (4 \,{\mathrm e}^{25}-1\right )}\) | \(21\) |
default | \(6 x +\frac {\left (8 \,{\mathrm e}^{25}-2\right ) {\mathrm e}^{-4 x \,{\mathrm e}^{25}+x}}{-4 \,{\mathrm e}^{25}+1}-2 \,{\mathrm e}^{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 0.67 \begin {gather*} 6 \, x - 2 \, e^{\left (-4 \, x e^{25} + x\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.25, size = 18, normalized size = 0.67 \begin {gather*} 6\,x-2\,{\mathrm {e}}^x-2\,{\mathrm {e}}^{-4\,x\,{\mathrm {e}}^{25}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 1.15 \begin {gather*} 6 x - 2 e^{x} - \frac {\left (-2 + 8 e^{25}\right ) e^{- 4 x e^{25} + x}}{-1 + 4 e^{25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________