Optimal. Leaf size=24 \[ e^{\left (-3-x-x \left (-2+x+\frac {1}{4} e^x \log (4)\right )\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 5.86, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {12, 6741, 6706} \begin {gather*} e^{\frac {1}{16} \left (4 x^2-4 x+e^x x \log (4)+12\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \exp \left (\frac {1}{16} \left (144-96 x+112 x^2-32 x^3+16 x^4+e^x \left (24 x-8 x^2+8 x^3\right ) \log (4)+e^{2 x} x^2 \log ^2(4)\right )\right ) \left (-48+112 x-48 x^2+32 x^3+e^x \left (12+4 x+8 x^2+4 x^3\right ) \log (4)+e^{2 x} \left (x+x^2\right ) \log ^2(4)\right ) \, dx\\ &=\frac {1}{8} \int e^{\frac {1}{16} \left (12-4 x+4 x^2+e^x x \log (4)\right )^2} \left (-48+112 x-48 x^2+32 x^3+e^x \left (12+4 x+8 x^2+4 x^3\right ) \log (4)+e^{2 x} \left (x+x^2\right ) \log ^2(4)\right ) \, dx\\ &=e^{\frac {1}{16} \left (12-4 x+4 x^2+e^x x \log (4)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.69, size = 117, normalized size = 4.88 \begin {gather*} \frac {1}{8} \int e^{\frac {1}{16} \left (144-96 x+112 x^2-32 x^3+16 x^4+e^x \left (24 x-8 x^2+8 x^3\right ) \log (4)+e^{2 x} x^2 \log ^2(4)\right )} \left (-48+112 x-48 x^2+32 x^3+e^x \left (12+4 x+8 x^2+4 x^3\right ) \log (4)+e^{2 x} \left (x+x^2\right ) \log ^2(4)\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 49, normalized size = 2.04 \begin {gather*} e^{\left (\frac {1}{4} \, x^{2} e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{4} - 2 \, x^{3} + {\left (x^{3} - x^{2} + 3 \, x\right )} e^{x} \log \relax (2) + 7 \, x^{2} - 6 \, x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 56, normalized size = 2.33 \begin {gather*} e^{\left (x^{3} e^{x} \log \relax (2) + \frac {1}{4} \, x^{2} e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{4} - x^{2} e^{x} \log \relax (2) - 2 \, x^{3} + 3 \, x e^{x} \log \relax (2) + 7 \, x^{2} - 6 \, x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 48, normalized size = 2.00
method | result | size |
risch | \(2^{x \left (x^{2}-x +3\right ) {\mathrm e}^{x}} {\mathrm e}^{\frac {x^{2} \ln \relax (2)^{2} {\mathrm e}^{2 x}}{4}+9+x^{4}-2 x^{3}+7 x^{2}-6 x}\) | \(48\) |
norman | \({\mathrm e}^{\frac {x^{2} \ln \relax (2)^{2} {\mathrm e}^{2 x}}{4}+\frac {\left (8 x^{3}-8 x^{2}+24 x \right ) \ln \relax (2) {\mathrm e}^{x}}{8}+x^{4}-2 x^{3}+7 x^{2}-6 x +9}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 56, normalized size = 2.33 \begin {gather*} e^{\left (x^{3} e^{x} \log \relax (2) + \frac {1}{4} \, x^{2} e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{4} - x^{2} e^{x} \log \relax (2) - 2 \, x^{3} + 3 \, x e^{x} \log \relax (2) + 7 \, x^{2} - 6 \, x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.17, size = 58, normalized size = 2.42 \begin {gather*} 2^{x^3\,{\mathrm {e}}^x-x^2\,{\mathrm {e}}^x+3\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-6\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^9\,{\mathrm {e}}^{-2\,x^3}\,{\mathrm {e}}^{7\,x^2}\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 51, normalized size = 2.12 \begin {gather*} e^{x^{4} - 2 x^{3} + \frac {x^{2} e^{2 x} \log {\relax (2 )}^{2}}{4} + 7 x^{2} - 6 x + \left (x^{3} - x^{2} + 3 x\right ) e^{x} \log {\relax (2 )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________