Optimal. Leaf size=21 \[ \frac {4 (2+x) (-1+4 x) \log \left (8+x+x^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-8 x+12 x^2+72 x^3+32 x^4\right ) \log (x)+\left (64-216 x-148 x^2-44 x^3-16 x^4+\left (224 x+284 x^2+60 x^3+32 x^4\right ) \log (x)\right ) \log \left (8+x+x^2\right )}{\left (8 x+x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-8 x+12 x^2+72 x^3+32 x^4\right ) \log (x)+\left (64-216 x-148 x^2-44 x^3-16 x^4+\left (224 x+284 x^2+60 x^3+32 x^4\right ) \log (x)\right ) \log \left (8+x+x^2\right )}{x \left (8+x+x^2\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {4 (2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)}+\frac {4 \left (2-7 x-4 x^2+7 x \log (x)+8 x^2 \log (x)\right ) \log \left (8+x+x^2\right )}{x \log ^2(x)}\right ) \, dx\\ &=4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+4 \int \frac {\left (2-7 x-4 x^2+7 x \log (x)+8 x^2 \log (x)\right ) \log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx\\ &=4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+4 \int \left (-\frac {7 \log \left (8+x+x^2\right )}{\log ^2(x)}+\frac {2 \log \left (8+x+x^2\right )}{x \log ^2(x)}-\frac {4 x \log \left (8+x+x^2\right )}{\log ^2(x)}+\frac {7 \log \left (8+x+x^2\right )}{\log (x)}+\frac {8 x \log \left (8+x+x^2\right )}{\log (x)}\right ) \, dx\\ &=4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx+28 \int \frac {\log \left (8+x+x^2\right )}{\log (x)} \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx\\ &=28 \log \left (8+x+x^2\right ) \text {li}(x)+4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {(1+2 x) \text {li}(x)}{8+x+x^2} \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx\\ &=28 \log \left (8+x+x^2\right ) \text {li}(x)+4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \left (\frac {\text {li}(x)}{8+x+x^2}+\frac {2 x \text {li}(x)}{8+x+x^2}\right ) \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx\\ &=28 \log \left (8+x+x^2\right ) \text {li}(x)+4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\text {li}(x)}{8+x+x^2} \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx-56 \int \frac {x \text {li}(x)}{8+x+x^2} \, dx\\ &=28 \log \left (8+x+x^2\right ) \text {li}(x)+4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \left (\frac {2 i \text {li}(x)}{\sqrt {31} \left (-1+i \sqrt {31}-2 x\right )}+\frac {2 i \text {li}(x)}{\sqrt {31} \left (1+i \sqrt {31}+2 x\right )}\right ) \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx-56 \int \left (\frac {\left (1+\frac {i}{\sqrt {31}}\right ) \text {li}(x)}{1-i \sqrt {31}+2 x}+\frac {\left (1-\frac {i}{\sqrt {31}}\right ) \text {li}(x)}{1+i \sqrt {31}+2 x}\right ) \, dx\\ &=28 \log \left (8+x+x^2\right ) \text {li}(x)+4 \int \frac {(2+x) (1+2 x) (-1+4 x)}{\left (8+x+x^2\right ) \log (x)} \, dx+8 \int \frac {\log \left (8+x+x^2\right )}{x \log ^2(x)} \, dx-16 \int \frac {x \log \left (8+x+x^2\right )}{\log ^2(x)} \, dx-28 \int \frac {\log \left (8+x+x^2\right )}{\log ^2(x)} \, dx+32 \int \frac {x \log \left (8+x+x^2\right )}{\log (x)} \, dx-\frac {(56 i) \int \frac {\text {li}(x)}{-1+i \sqrt {31}-2 x} \, dx}{\sqrt {31}}-\frac {(56 i) \int \frac {\text {li}(x)}{1+i \sqrt {31}+2 x} \, dx}{\sqrt {31}}-\frac {1}{31} \left (56 \left (31-i \sqrt {31}\right )\right ) \int \frac {\text {li}(x)}{1+i \sqrt {31}+2 x} \, dx-\frac {1}{31} \left (56 \left (31+i \sqrt {31}\right )\right ) \int \frac {\text {li}(x)}{1-i \sqrt {31}+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 1.10 \begin {gather*} \frac {4 \left (-2+7 x+4 x^2\right ) \log \left (8+x+x^2\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 23, normalized size = 1.10 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + 7 \, x - 2\right )} \log \left (x^{2} + x + 8\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.10 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + 7 \, x - 2\right )} \log \left (x^{2} + x + 8\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.14
method | result | size |
risch | \(\frac {4 \left (4 x^{2}+7 x -2\right ) \ln \left (x^{2}+x +8\right )}{\ln \relax (x )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 23, normalized size = 1.10 \begin {gather*} \frac {4 \, {\left (4 \, x^{2} + 7 \, x - 2\right )} \log \left (x^{2} + x + 8\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.08, size = 23, normalized size = 1.10 \begin {gather*} \frac {4\,\ln \left (x^2+x+8\right )\,\left (4\,x^2+7\,x-2\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 20, normalized size = 0.95 \begin {gather*} \frac {\left (16 x^{2} + 28 x - 8\right ) \log {\left (x^{2} + x + 8 \right )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________