Optimal. Leaf size=16 \[ \frac {\log \left (3 e^{4+e^{1+x}}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {14, 2178, 2551} \begin {gather*} \frac {\log \left (3 e^{e^{x+1}+4}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2178
Rule 2551
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{1+x}}{x}-\frac {\log \left (3 e^{4+e^{1+x}}\right )}{x^2}\right ) \, dx\\ &=\int \frac {e^{1+x}}{x} \, dx-\int \frac {\log \left (3 e^{4+e^{1+x}}\right )}{x^2} \, dx\\ &=e \text {Ei}(x)+\frac {\log \left (3 e^{4+e^{1+x}}\right )}{x}-\int \frac {e^{1+x}}{x} \, dx\\ &=\frac {\log \left (3 e^{4+e^{1+x}}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 1.00 \begin {gather*} \frac {\log \left (3 e^{4+e^{1+x}}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 12, normalized size = 0.75 \begin {gather*} \frac {e^{\left (x + 1\right )} + \log \relax (3) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 12, normalized size = 0.75 \begin {gather*} \frac {e^{\left (x + 1\right )} + \log \relax (3) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 1.19
method | result | size |
default | \(\frac {\ln \left (3 \,{\mathrm e}^{{\mathrm e}^{x +1}+4}\right )}{x}\) | \(19\) |
risch | \(-\frac {\ln \left ({\mathrm e}^{-{\mathrm e}^{x +1}-4}\right )}{x}+\frac {\ln \relax (3)}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 14, normalized size = 0.88 \begin {gather*} \frac {\log \left (3 \, e^{\left (e^{\left (x + 1\right )} + 4\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 12, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^{x+1}+\ln \relax (3)+4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.88 \begin {gather*} \frac {e^{x + 1}}{x} - \frac {-4 - \log {\relax (3 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________