Optimal. Leaf size=9 \[ \log \left (\log \left (e^x+\frac {1}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 13, normalized size of antiderivative = 1.44, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6684} \begin {gather*} \log \left (\log \left (\frac {e^x x+1}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (\log \left (\frac {1+e^x x}{x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 9, normalized size = 1.00 \begin {gather*} \log \left (\log \left (e^x+\frac {1}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 12, normalized size = 1.33 \begin {gather*} \log \left (\log \left (\frac {x e^{x} + 1}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 12, normalized size = 1.33 \begin {gather*} \log \left (\log \left (\frac {x e^{x} + 1}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 13, normalized size = 1.44
method | result | size |
norman | \(\ln \left (\ln \left (\frac {{\mathrm e}^{x} x +1}{x}\right )\right )\) | \(13\) |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x} x +1\right )+\frac {i \left (\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +1\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +1\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +1\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} x +1\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )\right )}{2}\right )\) | \(121\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 13, normalized size = 1.44 \begin {gather*} \log \left (\log \left (x e^{x} + 1\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 8, normalized size = 0.89 \begin {gather*} \ln \left (\ln \left ({\mathrm {e}}^x+\frac {1}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 10, normalized size = 1.11 \begin {gather*} \log {\left (\log {\left (\frac {x e^{x} + 1}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________