Optimal. Leaf size=23 \[ e^{3-\frac {e^{-1-x}}{(-3+x) x}} x \]
________________________________________________________________________________________
Rubi [F] time = 6.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right ) \left (9-6 x+x^2+\frac {e^{-1-x} \left (-3-x+x^2\right )}{x}\right )}{9 x-6 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right ) \left (9-6 x+x^2+\frac {e^{-1-x} \left (-3-x+x^2\right )}{x}\right )}{x \left (9-6 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right ) \left (9-6 x+x^2+\frac {e^{-1-x} \left (-3-x+x^2\right )}{x}\right )}{(-3+x)^2 x} \, dx\\ &=\int \left (\frac {\exp \left (\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{x}+\frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right ) \left (-3-x+x^2\right )}{(-3+x)^2 x^2}\right ) \, dx\\ &=\int \frac {\exp \left (\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{x} \, dx+\int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right ) \left (-3-x+x^2\right )}{(-3+x)^2 x^2} \, dx\\ &=\int e^{3-\frac {e^{-1-x}}{(-3+x) x}} \, dx+\int \left (\frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{3 (-3+x)^2}+\frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{3 (-3+x)}-\frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{3 x^2}-\frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{3 x}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{(-3+x)^2} \, dx+\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{-3+x} \, dx-\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{x^2} \, dx-\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{x} \, dx+\int e^{3-\frac {e^{-1-x}}{(-3+x) x}} \, dx\\ &=-\left (\frac {1}{3} \int e^{2-\frac {e^{-1-x}}{(-3+x) x}-x} \, dx\right )+\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{(-3+x)^2} \, dx-\frac {1}{3} \int \frac {e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}}{x} \, dx+\frac {1}{3} \int \frac {e^{2-\frac {e^{-1-x}}{(-3+x) x}-x} x}{-3+x} \, dx+\int e^{3-\frac {e^{-1-x}}{(-3+x) x}} \, dx\\ &=-\left (\frac {1}{3} \int e^{2-\frac {e^{-1-x}}{(-3+x) x}-x} \, dx\right )+\frac {1}{3} \int \left (e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}+\frac {3 e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}}{-3+x}\right ) \, dx+\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{(-3+x)^2} \, dx-\frac {1}{3} \int \frac {e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}}{x} \, dx+\int e^{3-\frac {e^{-1-x}}{(-3+x) x}} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (-1-x+\frac {-\frac {e^{-1-x}}{x}+(-3+x) \log \left (e^3 x\right )}{-3+x}\right )}{(-3+x)^2} \, dx-\frac {1}{3} \int \frac {e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}}{x} \, dx+\int e^{3-\frac {e^{-1-x}}{(-3+x) x}} \, dx+\int \frac {e^{2-\frac {e^{-1-x}}{(-3+x) x}-x}}{-3+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.81, size = 23, normalized size = 1.00 \begin {gather*} e^{3-\frac {e^{-1-x}}{(-3+x) x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 30, normalized size = 1.30 \begin {gather*} e^{\left (\frac {{\left (x - 3\right )} \log \relax (x) + 3 \, x - e^{\left (-x - \log \relax (x) - 1\right )} - 9}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 43, normalized size = 1.87 \begin {gather*} e^{\left (\frac {x \log \left (x e^{3}\right )}{x - 3} - \frac {e^{\left (-x - \log \relax (x) - 1\right )}}{x - 3} - \frac {3 \, \log \left (x e^{3}\right )}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.70
method | result | size |
risch | \({\mathrm e}^{\frac {x^{2} \ln \relax (x )-3 x \ln \relax (x )+3 x^{2}-{\mathrm e}^{-x -1}-9 x}{x \left (x -3\right )}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} - 6 \, x + \frac {{\left (x^{2} - x - 3\right )} e^{\left (-x - 1\right )}}{x} + 9\right )} e^{\left (\frac {{\left (x - 3\right )} \log \left (x e^{3}\right ) - \frac {e^{\left (-x - 1\right )}}{x}}{x - 3}\right )}}{x^{3} - 6 \, x^{2} + 9 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.66, size = 38, normalized size = 1.65 \begin {gather*} x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-1}}{3\,x-x^2}}\,{\mathrm {e}}^{\frac {3\,x}{x-3}}\,{\mathrm {e}}^{-\frac {9}{x-3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 22, normalized size = 0.96 \begin {gather*} e^{\frac {\left (x - 3\right ) \log {\left (x e^{3} \right )} - \frac {e^{- x - 1}}{x}}{x - 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________